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Abstract

For linear optimization (LO) problems, we consider a curvature integral first introduced

by Sonnevend et al. (1991). Our main result states that in order to establish an upper

bound for the total Sonnevend curvature of the central path, it is sufficient to consider

only the case when n = 2m. This also implies that the worst cases of LO problems for

path-following algorithms can be reconstructed for the case of n = 2m. As a by-product,

our construction yields an asymptotically Ω(n) worst-case lower bound for Sonnevend’s

curvature. Our research is motivated by the work of Deza et al. (2008) for the geomet-

ric curvature of the central path, which is analogous to the Klee-Walkup result for the

diameter of a polytope.

1 Introduction

We first introduce our notation and recall the basics of interior-point methods (IPM).

Let A be a m× n matrix of full rank. For c ∈ R
n and b ∈ R

m, consider the primal and dual

linear optimization (LO) problems,

min cTx

s.t. Ax = b

x ≥ 0,

max bT y

s.t. AT y + s = c

s ≥ 0,

(1)

where x, s ∈ R
n, y ∈ R

m are vectors of variables. The sets of feasible solutions in (1) are

referred to as primal and dual sets, respectively. Provided that the LO problems in (1) have

strictly positive primal and dual solutions, the central path (x(µ), y(µ), s(µ)), µ > 0 exists
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and satisfies the equations:

Ax = b, x > 0,

AT y + s = c, s > 0,

xs = µe,

(2)

where uv denotes [u1v1, . . . , unvn]
T for u, v ∈ R

n, and e is the all-one vector.

It is well-known that as µ → 0, the points (x(µ), y(µ), s(µ)) converge to a primal and dual

optimal solution for (1). Path-following algorithms traverse the central path with a certain

proximity measure until a primal-dual optimal solution for (1) is reached.

Our main focus in this paper is a curvature integral

∫ µ1

µ0

κ(µ)

µ
dµ, where

κ(µ) = ‖µẋṡ‖1/2, which was first introduced by Sonnevend et al. [7]. This integral will be

referred to as the Sonnevend curvature. In terms of this curvature integral, Stoer et al. [8]

rigorously provided a complexity bound for an algorithm, which is a variant of what is now

known as the Mizuno-Todd-Ye predictor-corrector (MTY P-C) algorithm.

Our main result for the Sonnevend curvature

∫ µ1

µ0

κ(µ)

µ
dµ can be described as follows. Start-

ing with an LO problem of size (m,n) with a bounded dual feasible set, we give a new LO

problem whose size is (m+ 1, n+ 1). The Sonnevend curvature for the latter is greater than

that of the former by a constant independent of the problem data. Starting with a LO prob-

lem of size (m,n), and by continuing this process, we get an LO problem with size (m, 2m)

whose curvature is greater than that of the original problem. This implies that in order to

prove an upper bound for the Sonnevend curvature of the central path, it is sufficient to

consider only the case when n = 2m.

Our work is motivated by the paper of Deza et al. [3]. In that paper, the authors con-

struct a sequence of polytopes whose central path approximates that of the previous one.

Furthermore, it is shown that total geometric curvature of the central path increases by a

constant. In this paper, we use the very same construction for the case of n > 2m. Hence,

for the aforementioned construction, it can be concluded that Sonnevend’s curvature and

the geometric curvature of the central path have similar behavior. In [7], the authors use a

different construction, which gives rise to the lower bound of Ω(n) for Sonnevend’s curvature

asymptotically. Our main result implies a bound which also achieves this worst-case lower

bound.

The idea of using a sequence of polytopes whose size and dimension increase by one was

first used by Klee-Walkup [4] in the context of diameter of a polytope. The diameter of

a polytope is the maximum of the shortest edge path’s between any two vertices. A lower

bound in the worst-case for the diameter of a polytope implies the same lower bound for the

iteration complexity of any simplex type algorithm. In [4], it is shown that proving an upper

bound for the diameter of a polytope for general (m,n) reduces to the case of (m, 2m). From

an optimization perspective, it is interesting to note the analogies between the diameter of
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a polytope, the geometric, and the Sonnevend curvature of the central path. Moreover, this

similarity suggests that the most “difficult” LO problems also occur when n = 2m.

The rest of the paper is organized as follows. In Section 2 we give the background informa-

tion for Sonnevend’s curvature

∫ µ1

µ0

κ(µ)

µ
dµ. In Section 3, we present our main results and

conclude the paper with further remarks in Section 4.

2 The Sonnevend curvature of the central path

Sonnevend’s curvature is closely related to the iteration-complexity of a variant of the MTY

predictor-corrector algorithm which was introduced in [7]. Let κ(µ) = ‖µẋṡ‖1/2. Stoer et

al. [8] proved that their predictor-corrector algorithm has a complexity bound, which can be

expressed in terms of κ(µ).

Theorem 2.1. Let N be the number of iterations of Algorithm 2.1 [8] to reduce the barrier

parameter from µ1 to µ0. Then

C3

∫ µ1

µ0

κ(µ)

µ
dµ− 1 ≤ N ≤ C1

∫ µ1

µ0

κ(µ)

µ
dµ+ C2 log

(

µ1

µ0

)

+ 2 (3)

for some “universal” constants C1, C2, and C3 that depend only on the neighborhood of the

central path.

The following proposition states the basic properties of Sonnevend’s curvature.

Proposition 2.2. [7, 10] The following holds.

1. We have κ(µ) =

∥

∥

∥

∥

∥

µṡ(µ)

s(µ)
−
(

µṡ(µ)

s(µ)

)2
∥

∥

∥

∥

∥

1

2

.

2. We have
µṡ(µ)

s(µ)
= Me, where M = S−1AT (AS−2AT )−1AS−1 is the projection matrix.

For a bounded dual feasible set, we have
µṡ(µ)

s(µ)
→ 0 as µ → ∞.

3. We have

∥

∥

∥

∥

µṡ(µ)

s(µ)

∥

∥

∥

∥

≤
√
n and κ(µ) ≤ √

n implying that

∫ µ1

µ0

κ(µ)

µ
dµ = O

(√
n log

(

µ1

µ0

))

.

Monterio et al. [5] proved that, as µ0 → 0 and µ1 → ∞,

∫ µ1

µ0

κ(µ)

µ
dµ admits an upper bound

expression which involves a condition number depending only on A. This condition number
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is defined as

χ̄A := sup
D

{‖AT (ADAT )−1AD‖}, (4)

where D ranges over the set of positive diagonal matrices. It is known that for matrix with

integer entries ([9], Lemma 24), log(χ̄A) = LA, where LA is the input bit length of A. Then

we have the following bound for Sonnevend’s curvature.

Theorem 2.3. [5] We have

∫

∞

0

κ(µ)

µ
dµ = O(n3.5 log(n+ χ̄A)).

Theorem 2.3 shows that, the Sonnevend curvature admits an upper bound independent of

both b ∈ R
m and c ∈ R

n. In light of this fact, we make the following definition.

Definition 2.4. Given A ∈ R
m×n, define

Λ(m,n,A) = sup

{
∫

∞

0

κ(µ)

µ
dµ : b ∈ R

m, c ∈ R
n

}

.

3 Main results

In this section, we introduce the construction used in [3]. First assume n > 2m. We will later

reduce the case m < n < 2m to this case. Consider the LO problem

max{bT y : y ∈ P}, where P = {y ∈ R
m : AT y ≤ c} is a polytope. (5)

Without loss of generality, we may assume that:

(A1) The analytic center y∗ of P is the origin, and

(A2) c = e where e is all-one vector.

First, whenever y∗ 6= 0, we can always shift a general polytope P with the transformation

AT y ≤ c−AT y∗ so that assumption (A1) is satisfied. Since κ(µ) only depends on µ and the

derivatives ẋ and ṡ, this transformation would not change the Sonnevend curvature. Note

that assuming y∗ = 0, the analytic center being an interior point in P implies that c > 0.

Second, if we rescale our LO problem with a positive diagonal matrix as

min (Dc)Tx

s.t. ADx = b

x ≥ 0 ,

max bT y

s.t. DAT y +Ds = Dc

s ≥ 0 ;

then the rescaled central path becomes (x̄(µ), ȳ(µ), s̄(µ)) =
(

D−1x(µ), y(µ), Ds(µ)
)

implying

that κ(µ) does not change. Since c > 0 by assumption, by choosing D with De = c−1, we

can make c = e.
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Figure 1: The dotted path CP is the central path of the original polytope P. The figure shows how the central

path C
P

is changing with θ. A smaller θ1 leads to the path C
1

P
, while C

2

P
results from θ2 >> θ1.

We now associate problem (5) with a sequence of LO problems parameterized by θ > 0 as

follows:

max bT y + θz

[

AT −en×1

01×m 1

][

ȳ

z

]

+

[

s̄

s̄n+1

]

=

[

0n×1

1

]

s̄, s̄n+1 ≥ 0.

(6)

The feasible set for the problem (6) can be written as P = {AT ȳ ≤ ze, z ≤ 1}.

Let Ā =

[

A 0m×1

−e1×n 1

]

. The associated central path equations for (6) are

AT ȳ(µ)

z(µ)
+

s̄(µ)

z(µ)
= e, As̄(µ)−1 =

b

µ
, (7)

1

s̄n+1(µ)
=

1

1− z(µ)
=

n
∑

i=1

1

s̄i(µ)
+

θ

µ
. (8)

Note that ȳ, s̄ and z̄ in (7) and (8) are functions of both µ and θ. We will usually drop θ or

µ, when no confusion arises.

Denote the central path of P and P by CP and C
P
, respectively.

Intuitively a large θ should force z ∼= 1 in such a way that, the central path C
P

first follows

an almost straight line from the analytic center to the face P × {1} and then stays close to

the central path CP . The following proposition, first proved in [3], shows that this is indeed

the case.
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Proposition 3.1. Let [µ0, µ1] be a fixed interval. Then, as θ → ∞, on [µ0, µ1] we have,

1. z(µ) → 1 and ȳ(µ) → y(µ) uniformly;

2. s̄n+1(µ) → 0 and s̄(µ) → s(µ) uniformly.

Proof. Claim 1. is the same as Proposition 2.1 in [3] (see also the remark following it).

Statement 2. follows from the first part since s̄n+1(µ) = 1− z(µ) and s̄(µ) = z(µ)−AT ȳ(µ).

The following proposition shows that if z(µ) in (7) and (8) is known, then ȳ(µ) is completely

determined by the central path CP .

Proposition 3.2. Let z(µ) satisfy the central path equations (7),(8). Then

ȳ(µ) = z(µ)y

(

µ

z(µ)

)

and s̄(µ) = z(µ)s

(

µ

z(µ)

)

.

Proof. Direct substition into (7), with the choice of µ′ =
µ

z(µ)
, shows that the vectors

ȳ(µ) = z(µ)y

(

µ

z(µ)

)

and s̄(µ) = z(µ)s

(

µ

z(µ)

)

satisfy the equations (7), which are the

central path equations for (5). Since the solution is unique, the claim follows.

Note that Proposition 3.1 and Proposition 3.2 show that for a fixed interval [µ0, µ1], parameter

θ can be chosen large enough so that the central paths CP and C
P
become close to each other

on that interval. Hence, it is natural to expect that Sonnevend’s curvature for CP and C
P

on

the same interval should have similar order of magnitudes.

Proposition 3.3. Let κ̄(µ) correspond to the central path C
P
. Then, on the fixed interval

[µ0, µ1], we have ˙̄s(µ) →
[

ṡ(µ)

0

]

uniformly as θ → ∞. Consequently, as θ → ∞,

κ̄(µ) → κ(µ) on [µ0, µ1] uniformly as well.

Proof. It is well-known, see [6] e.g., that for system (2), we have

ṡ =
1

µ
AT (AS−2AT )−1AS−1e. Now we calculate U := Ā

[

S̄−1 0

0 s−1
n+1

]

=

[

AS̄−1 0

−s̄−1 (sn+1)
−1

]

,

which gives

UUT =

[

AS̄−2AT , −As̄−1

(−As̄−1)T , eT s̄−2 + 1
s̄2
n+1

]

. (9)

From the formula for the inverse of a block diagonal matrix, we obtain

(UUT )−1 =

[

(AS̄−2AT )−1 + W1

r , W2

r

(W2

r )T , 1
r

]

, (10)
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where r = eT s̄−2 + 1
s̄2
n+1

− (As̄−1)T (AS̄−2AT )−1As̄−1, W2 = (AS̄−2AT )−1As̄−1, and

W1 = W2W
T
2 . Then, since s̄ → s as θ → ∞, it follows that the terms W1 and W2 converge

to finite limits that are only determined by (5). Then, in terms of s̄n+1, we get
1
r = O(s̄2n+1).

Thus, we conclude that

(UUT )−1 =

[

(AS̄−2AT )−1 +O(s̄2n+1) , O(s̄2n+1)

O(s̄2n+1) , O(s̄2n+1)

]

,

where O(.) should be understood to apply to the entries of a matrix, vector, or to a scalar

depending on the context. Calculate

(UUT )−1Ā

[

s̄−1

s̄−1
n+1

]

= (UUT )−1

[

As̄−1

−eT s̄−1 + s̄−1
n+1

]

=

[

(AS̄−2AT )−1As̄−1 +O(s̄n+1)

O(s̄n+1)

]

.

(11)

Finally, from (11), we obtain

ĀT (UUT )−1Ā

[

s̄−1

s̄−1
n+1

]

=

[

AT (AS̄−2AT )−1As̄−1 +O(s̄n+1)

O(s̄n+1)

]

.

Taking the limit in θ, we get

˙̄s(µ) =
1

µ
ĀT (UUT )−1Ā

[

s̄−1

s̄−1
n+1

]

→
[

1
µA

T (AS−2AT )−1As−1

0

]

=

[

ṡ

0

]

. (12)

Since from Proposition 2.2, all the terms in κ̄(µ) converge uniformly, we conclude that κ̄(µ) →
κ(µ) uniformly on [µ0, µ1] as θ → ∞.

Corollary 3.4. On the fixed interval [µ0, µ1], consider the Sonnevend curvature
∫ µ1

µ0

κ(µ)

µ
dµ for the central path C

P
. Then, for any ǫ > 0, there is a LO problem of size

(m+ 1, n+ 1) with the Sonnevend curvature

∫ µ1

µ0

κ̄(µ)

µ
dµ ≥

∫ µ1

µ0

κ(µ)

µ
dµ− ǫ.

Proof. By Proposition 3.3, we can choose a θ large enough so that κ(µ) and κ̄(µ) is arbitrarily

close to each other on [µ0, µ1]. Hence the claim follows.

We proved that on a fixed interval [µ0, µ1], one can always make the Sonnevend curvature

of C
P

and CP arbitrarily close to each other. In the sequel, we will further show that there

exists an interval [µ1, µ2] such that while Sonnevend’s curvature of CP stays small on [µ1, µ2],
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it can be made as large as a constant for C
P

on the same interval by increasing θ. To this

end, the following proposition provides important tools. First, we need special notation.

Notation: Let ∆ : R2 → R be a function such that ∆(α1, α2) converges uniformly in α2 to 0

as α1 → ∞. Then we will write ∆(α1, α2) = o(1) as α1 → ∞, and write the bound is uniform

in α2.

To display the dependence on θ, in the sequel, we write the relevant quantities as functions

of µ and θ.

Proposition 3.5. As µ → ∞ one has,

1. s̄i(µ, θ)− z(µ, θ) = o(1) for i = 1, . . . , n,

2. z(µ, θ) >
1

2
, and

3.
µ ˙̄si(µ, θ)

s̄i(µ, θ)
− µż(µ, θ)

z(µ, θ)
= o(1) for i = 1, . . . , n.

Moreover, in statements 1. and 3., the bound is uniform in θ.

Proof.

1. From Proposition 3.2, we have s̄(µ, θ) = z(µ, θ)

(

e−AT y(
µ

z(µ, θ)
)

)

. Since by assump-

tion, the analytic center of P is y∗ = 0, we have y(µ) → 0 as µ → ∞. This proves the

claim.

2. Since the analytic center of P is y∗ = 0, we conclude si(µ, θ) ≤ n for large µ with

i = 1, . . . , n. From (8) and Proposition 3.2, we have

1

1− z(µ, θ)
− 1

z(µ, θ)

(

n
∑

i=1

1

si(
µ

z(µ,θ))

)

=
θ

µ
> 0, (13)

which implies

z(µ, θ) >

n
∑

i=1

1

si(
µ

z(µ,θ))

1 +
n
∑

i=1

1

si(
µ

z(µ,θ))

. (14)

Since si(µ, θ) ≤ n for large µ, i = 1, . . . , n, (14) yields
n
∑

i=1

1

si(µ, θ)
≥ 1 for large µ.

Then from (14), and using the fact that z(µ, θ) ≤ 1, we obtain z(µ, θ) >
1

2
for large µ.
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3. Let i = 1, . . . , n. Differentiating the equation s̄i(µ, θ) = z(µ, θ)si

(

µ

z(µ, θ)

)

from

Proposition 3.2 gives,

˙̄si(µ, θ) = ż(µ, θ)s

(

µ

z(µ, θ)

)

+ z(µ, θ)ṡi

(

µ

z(µ, θ)

)(

1

z(µ, θ)
− µż(µ, θ)

z(µ, θ)2

)

. (15)

Using (15),

µ ˙̄si(µ, θ)

s̄i(µ, θ)
=

µż(µ, θ)

z(µ, θ)
+

µṡi

(

µ
z(µ,θ)

)

si

(

µ
z(µ,θ)

)

(

1

z(µ, θ)
− µż(µ, θ)

z(µ, θ)2

)

. (16)

Proposition 2.2 part 2. implies that
µṡi

(

µ
z(µ,θ)

)

si

(

µ
z(µ,θ)

) → 0 as µ → ∞. Also Proposition 2.2

part 3. implies that

∣

∣

∣

∣

µż(µ, θ)

1− z(µ, θ)

∣

∣

∣

∣

=

∣

∣

∣

∣

µ ˙̄sn+1(µ, θ)

s̄n+1(µ, θ)

∣

∣

∣

∣

≤
√
n,

which further implies that

∣

∣

∣

∣

µż(µ, θ)

z(µ, θ)2

∣

∣

∣

∣

≤
√
n
(1− z(µ, θ))

z(µ, θ)2
.

The bound
1

2
< z(µ, θ) ≤ 1 from part 2. implies that

∣

∣

∣

∣

µż(µ, θ)

z(µ, θ)2

∣

∣

∣

∣

≤
√
n
(1− z(µ, θ))

z(µ, θ)2
≤ 2

√
n,

which yields

∣

∣

∣

∣

(

1

z(µ, θ)
− µż(µ, θ)

z(µ, θ)2

)
∣

∣

∣

∣

≤ 2 + 2
√
n.

Hence we conclude from (16) that,
µ ˙̄si(µ, θ)

s̄i(µ, θ)
→ µż(µ, θ)

z(µ, θ)
for i = 1, . . . , n as µ → ∞.

Note also that all the bounds come from problem (5), and therefore independent of θ.

This proves that the bounds in statements 1. and 3. are uniform in θ.

Now we are ready to present our main tool which leads to a constant increase in Sonnevend’s

curvature of C
P
.

Lemma 3.6. As µ → ∞, we have
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µ ˙̄sn+1(µ, θ)

s̄n+1(µ, θ)
=

θ

µ

θ

µ
+

n

z(µ, θ)2

+ o(1).

Moreover the bound is uniform in θ.

Proof. From (8), we have s̄n+1(µ, θ) =
1

θ

µ
+

n
∑

i=1

1

s̄i(µ, θ)

. Then one has

log(s̄n+1(µ, θ)) = − log

(

θ

µ
+

n
∑

i=1

1

s̄i(µ, θ)

)

. (17)

By differentiating (17) and multiplying by µ, we get

µ ˙̄sn+1(µ, θ)

s̄n+1(µ, θ)
=

θ

µ
+

n
∑

i=1

µ ˙̄si(µ, θ)

s̄i(µ, θ)2

θ

µ
+

n
∑

i=1

1

s̄i(µ, θ)

. (18)

Substituting s̄n+1(µ, θ) = 1− z(µ, θ) in (18) and using parts 1. and 3. in Proposition 3.5, as

µ → ∞, we can write;

− µż(µ, θ)

1− z(µ, θ)
=

θ

µ
+

nµż(µ, θ) + o(1)

z(µ, θ)2 + o(1)
θ

µ
+

n

z(µ, θ)
+ o(1)

. (19)

Rearranging the terms in (19), we have

−µż(µ, θ) =

(1− z(µ, θ))θ

µ
+ (1− z(µ, θ))

(

nµż(µ, θ) + o(1)

z(µ, θ)2 + o(1)

)

θ

µ
+

n

z(µ, θ)
+ o(1)

. (20)

To solve (20) for µż(µ, θ) explicitly, we first get

− µż(µ, θ)

(

θ

µ
+

n

z(µ, θ)
+

(

(1− z(µ, θ))n

z(µ, θ)2 + o(1)

)

+ o(1)

)

=
(1− z(µ, θ))θ

µ
+ (1− z(µ, θ))o(1).
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Finally we obtain,

− µż(µ, θ)

(1− z(µ, θ))
=

θ

µ
+ o(1)

θ

µ
+

n

z(µ, θ)
+

(

(1− z(µ, θ))n

z(µ, θ)2 + o(1)

)

+ o(1)

=

θ

µ
+ o(1)

θ

µ
+

n

z(µ, θ)2
+ o(1)

=

θ

µ

θ

µ
+

n

z(µ, θ)2

+ o(1),

which proves the claim. Moreover, since all the bounds come from Proposition 3.5, the bound

is uniform in θ. This concludes the proof.

Corollary 3.7. There exists a τ ≥
√
19

40
log 2 such that

∫

∞

0

κ̄(µ)

µ
dµ ≥

∫

∞

0

κ(µ)

µ
dµ+ τ.

Proof. Let ǫ > 0. Since

∫

∞

0

κ(µ)

µ
dµ is finite by Theorem 2.3, one can find a µ0 and a µ1 such

that

∫ µ0

0

κ(µ)

µ
dµ ≤ ǫ and

∫

∞

µ1

κ(µ)

µ
dµ ≤ ǫ. Note that from Lemma 3.6, we can also choose

a µ1 such that

∣

∣

∣

∣

∣

∣

∣

∣

µ ˙̄sn+1(µ, θ)

s̄n+1(µ, θ)
−

θ

µ

θ

µ
+

n

z(µ, θ)2

∣

∣

∣

∣

∣

∣

∣

∣

≤ 1

30
(21)

for µ ≥ µ1 and for any θ > 0.

Let v =

∫ µ1

µ0

κ(µ)

µ
dµ. Having µ1 chosen, we need to choose a θ′ large enough so that both

θ′

µ1
> n, and

∫ µ1

µ0

κ̄(µ)

µ
dµ ≥ v − ǫ are satisfied. Note that Corollary 3.4 implies that such

a θ′ exists. Since by Proposition 3.5, part 2., we have
1

2
≤ z(µ, θ′) ≤ 1, it follows that

n ≤ n

z(µ, θ′)2
≤ 4n for n ≥ 2. Since by assumption

θ′

µ1
> n, there exist µ2 > µ1 such that

θ′

µ2
= n. Then on µ ∈ [µ2, 2µ2], we have

n

2
≤ θ′

µ
≤ n and n ≤ n

z(µ, θ′)2
≤ 4n, which together

implies that

1

10
≤

θ′

µ

θ′

µ
+

n

z(µ, θ′)2

≤ 2

3
(22)
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Then for µ ∈ [µ2, 2µ2], (21) and (22) together imply
1

20
≤ µ ˙̄sn+1(µ, θ

′)

s̄n+1(µ, θ′)
≤ 7

10
. Thus we

obtain

∣

∣

∣

∣

∣

(

µ ˙̄sn+1(µ, θ
′)

s̄n+1(µ, θ′)

)2

−
(

µ ˙̄sn+1(µ, θ
′)

s̄n+1(µ, θ′)

)

∣

∣

∣

∣

∣

1

2

≥
√
19

20
(23)

for µ ∈ [µ2, 2µ2]. Hence from (23) and Proposition 2.2, part 1., we obtain
∫ 2µ2

µ2

κ̄(µ)

µ
dµ ≥

√
19

20
log 2.

Finally, we have

∫

∞

0

κ̄(µ)

µ
dµ ≥

∫

∞

µ0

κ̄(µ)

µ
dµ ≥

∫ 2µ2

µ0

κ̄(µ)

µ
dµ ≥

∫ µ1

µ0

κ̄(µ)

µ
dµ+

∫ 2µ2

µ2

κ̄(µ)

µ
dµ

≥ (v − ǫ) +

√
19

20
log 2

≥
∫

∞

µ0

κ(µ)

µ
dµ− 2ǫ+

√
19

20
log 2

≥
∫

∞

0

κ(µ)

µ
dµ− 3ǫ+

√
19

20
log 2.

The claim follows, since ǫ can be chosen arbitrarily small.

Finally we deal with the case when m < n < 2m. In this case let Â = [A A], b̂ = 2b, and

ĉ =

[

c

c

]

so that n̂ = 2n > 2m. Then the central path is given as x̂(µ) =

[

x(µ)

x(µ)

]

,

ŷ(µ) = y(µ), and ŝ(µ) =

[

s(µ)

s(µ)

]

. From these formulas, it is easy to see that, κ̂(µ) = 2
1

4κ(µ).

Thus since we have n̂ > 2m, our previous results apply.

The following corollary summarizes our findings in terms of Λ(m,n,A), see Definition 2.4.

Corollary 3.8. Let A ∈ R
m×n. Then there exists an m, a matrix Ā ∈ R

m×2m, and a

constant τ independent of problem data such that,

• If n > 2m, then Λ(m,n,A) + (n− 2m)τ ≤ Λ(m, 2m, Ā), where m = n−m.

• If m < n < 2m, then Λ(m,n,A) + 2(n−m)τ ≤ 2
1

4Λ(m, 2m, Ā), where m = 2n−m.

Hence in either case, we conclude that there is an m < 2n such that

Λ(m,n,A) ≤ 2
1

4Λ(m, 2m, Ā).

12



Proof. We give the proof for only the case of n > 2m. The case of m < n < 2m is analogous.

Let ǫ > 0 and A ∈ R
m×n be given. From Definition 2.4, one can find b ∈ R

m and c ∈ R
n such

that Λ(m,n,A) ≤
∫

∞

0

κ(µ)

µ
dµ + ǫ. From Corollary 3.7, increasing the size of the problem

n− 2m times, we obtain a new problem data Ā ∈ R
m×2m, b ∈ R

m and c ∈ R
2m such that

∫

∞

0

κ(µ)

µ
dµ ≤

∫

∞

0

κ̄(µ)

µ
dµ− (n− 2m)τ,

where

∫

∞

0

κ̄(µ)

µ
dµ is the Sonnevend curvature of the new central path and τ is the constant

derived in the proof of Corollary 3.7. Using Definition 2.4 once again, it follows that

Λ(m,n,A) ≤
∫

∞

0

κ̄(µ)

µ
dµ− (n− 2m)τ + ǫ

≤ Λ(m, n̄, Ā)− (n− 2m)τ + ǫ.

Since ǫ is arbitrarily small, the result follows.

In the end, several observations are in order. First, even though we presented the construction

(6) for n > 2m, the construction (6) is valid for any m and n, and the increase in the

Sonnevend curvature is still at least a constant. Second, repeating (6) leads to an Ω(n) worst-

case lower bound for the Sonnevend curvature for a problem data Ā, b̄, c̄, where the increase

occurs for µi << µi+1. Since the constant increase occurs around a point on the central path

close to the analytic center, each µi will be large. However, in the final LO problem, by doing

the scaling b̂ :=
b̄

η
by a large η, the same Ω(n) worst-case iteration complexity can occur on

any interval [µ
′

, µ
′′

].

4 Conclusions and further remarks

In order to prove an upper bound for the Sonnevend curvature for general any (m,n), it is

sufficient, in light of our main result, to prove it only for the n = 2m case. A similar behavior

is known for both the diameter of a polytope [4], and the total geometric curvature of the

central path [1, 2, 3]. The lower bound Ω(n) for the Sonnevend curvature is also analogous to

the worst-case lower bound known for the geometric curvature, [1, 2, 3]. An interesting topic

for future research would be to investigate the relationship between the Sonnevend curvature

and the geometric curvature of the central path in a more general setting.
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