
Noname manuscript No.
(will be inserted by the editor)

A Globally Convergent Primal-Dual Active-Set Framework
for Large-Scale Convex Quadratic Optimization

Frank E. Curtis · Zheng Han ·
Daniel P. Robinson

July 6, 2014

Abstract We present a primal-dual active-set framework for solving large-scale
convex quadratic optimization problems (QPs). In contrast to classical active-set
methods, our framework allows for multiple simultaneous changes in the active-
set estimate, which often leads to rapid identification of the optimal active-set
regardless of the initial estimate. The iterates of our framework are the active-set
estimates themselves, where for each a primal-dual solution is uniquely defined via
a reduced subproblem. Through the introduction of an index set auxiliary to the
active-set estimate, our approach is globally convergent for strictly convex QPs.
Moreover, the computational cost of each iteration typically is only modestly more
than the cost of solving a reduced linear system. Numerical results are provided,
illustrating that two proposed instances of our framework are efficient in practice,
even on poorly conditioned problems. We attribute these latter benefits to the
relationship between our framework and semi-smooth Newton techniques.

Keywords convex quadratic optimization, active-set methods, large-scale
optimization, semi-smooth Newton methods

Mathematics Subject Classification (2000) 49M05, 49M15, 65K05, 65K10,
65K15

Frank E. Curtis
Dept. of Industrial and Systems Engineering, Lehigh University, Bethlehem, PA, USA.
This author was supported in part by National Science Foundation grant DMS–1016291.
E-mail: frank.e.curtis@gmail.com

Zheng Han
Dept. of Industrial and Systems Engineering, Lehigh University, Bethlehem, PA, USA.
This author was supported in part by National Science Foundation grant DMS–1016291.
E-mail: zhh210@lehigh.edu

Daniel P. Robinson
Dept. of Applied Mathematics and Statistics, Johns Hopkins University, Baltimore, MD, USA.
This author was supported in part by National Science Foundation grant DMS–1217153.
E-mail: daniel.p.robinson@jhu.edu

2 Frank E. Curtis et al.

1 Introduction

In this paper, we introduce a primal-dual active-set framework for solving strictly
convex quadratic optimization problems (QPs). The importance of having effi-
cient algorithms for solving such problems is paramount as practitioners often
seek the solution of a single quadratic optimization problem [29] or the solu-
tions of a sequence of QPs as a means for solving nonlinear problems. This latter
situation occurs, e.g., in the contexts of augmented Lagrangian (AL) [4,8] and
sequential quadratic optimization (SQO) methods [14,17–20,31] for solving non-
linear optimization problems. Specific application areas requiring the solution of
large-scale convex QPs include bound-constrained linear least-squares estimation
problems [37], the solution of partial differential equations over obstacles [7], the
journal bearing problem [10], model predictive control problems [2,3,25], and the
smooth primal support vector machine problem [36].

Two popular classes of algorithms for solving convex QPs are interior-point and
active-set methods. Motivated by our interests in AL and SQO methods for solving
nonlinear optimization problems, we focus on methods in the latter class due to
their abilities to exploit good starting points and to compute accurate solutions
despite ill-conditioning and/or degeneracy. The main disadvantage of previously
proposed active-set methods is their potentially high computational costs vis-à-
vis that of interior-point methods, which is precisely the disadvantage that the
framework in this paper is designed to overcome.

The goal of an active-set method is to identify an optimal active-set, which in
our formulation refers to variables that are equal to either their lower or upper
bounds at the optimal solution. Classical active-set methods [6,15,21] maintain a
so-called working-set as an estimate of an optimal active-set. (Roughly speaking, a
working-set is an estimate of a subset of the optimal active-set, chosen so that an
associated basis matrix is nonsingular.) The iterates are forced to remain primal
(or dual) feasible, and during each iteration a single index is added to, or removed
from, the working-set. Provided that cycling is prevented at degenerate points,
global convergence of these methods is guaranteed by monotonically decreasing
(increasing) the value of the primal (dual) objective function. However, this incre-
mental process of one-by-one changes in the working-set is the main contributing
factor in the potentially high computational costs that prevent classical active-set
methods from being effective general-purpose solvers for large-scale problems.

The purpose of this paper is to present, analyze, and provide numerical results
for a primal-dual active-set framework for solving large-scale convex QPs. Like all
active-set methods, our framework can take advantage of good initial estimates of
the optimal active-set. However, unlike classical active-set methods, our strategy
allows for rapid adaptation of the active-set estimate. The framework is based on
the primal-dual active-set strategy described by Hintermüller, Ito, and Kunisch
in [25]; see also [1] for a similar method proposed for solving linear complemen-
tarity problems. The key difference between our framework and the algorithm in
[25], however, is that we introduce a set, auxiliary to the active-set estimate, to
house the indices of variables whose bounds are to be enforced explicitly during a
given iteration. By moving indices into this auxiliary set, our active-set estimates
need only form subsets of the optimal active-set in order to produce the optimal
solution. Indeed, by carefully manipulating this set, our method is globally conver-
gent for QPs with equality and inequality constraints and with any strictly convex

A Primal-Dual Active-Set Framework for Convex Quadratic Optimization 3

quadratic objective function. This is in contrast to the method proposed in [25],
which is proved to be globally convergent only for bound-constrained problems
with certain types of quadratic objectives, and which has been shown to cycle on
other convex QPs; e.g., see [13] and Example 1 in §3.1. We refer the reader to [2,
3,5,26,28,32] for other algorithms that allow for rapid evolution of the active set
estimate, but note that they are not guaranteed to converge on all strictly convex
QPs. Overall, our idea of employing an auxiliary set represents a straightforward
enhancement of the methodology in [25]. However, our enhancement is novel and
allows for global convergence guarantees on a much broader class of problems,
while maintaining the impressive practical behavior of the algorithm in [25].

We propose two specific instances of our framework that possess these global
convergence guarantees. However, perhaps more important than these guarantees
is that, in our experience, our techniques often leave the auxiliary set empty. This is
advantageous as in such cases our instances reduce to the algorithm in [25], which
is extremely efficient when it does converge. (In particular, when our auxiliary
set is empty, the cost of each iteration is the same as that in [25], i.e., that of
solving a reduced linear system.) However, even for large and poorly conditioned
problems—e.g., with up to 104 variables and objective functions whose Hessian
matrices have condition number up to 106—we typically find that the auxiliary
set needs only to include very few indices relative to n. In such cases, the resulting
reduced subproblems can be solved via the enumeration of all potential active-sets
or via a classical active-set method, where in the latter case the cost may only
amount to a linear system solve and a few updates to the corresponding matrix
factorization. Overall, our numerical experiments illustrate that the goals of our
globalization mechanism (i.e., the introduction of our auxiliary set) are met in
practice: the set remains small to maintain low computational costs, and it only
increases in size to avoid the cycling that may occur in the algorithm from [25]
when applied to solve certain convex QPs. Due to our theoretical convergence
guarantees and encouraging numerical results, we believe that our framework is a
promising active-set approach for solving large-scale convex QPs.

We remark that the convergence guarantees for our framework are ensured
without resorting to globalization strategies typical in constrained optimization,
such as an objective-function-based merit function or filter, which typically impose
the use of line searches to obtain solution estimates that are acceptable accord-
ing to these mechanisms. Instead, global convergence in the framework that we
present is based on monotonic increases in the size of our auxiliary set, or on
monotonic decreases in the optimality error (guided by manipulations of the aux-
iliary set). Overall, one may summarize that global convergence of primal active
set algorithms [31] is guaranteed by monotonic decreases of the primal objective
function, global convergence of dual active set algorithms [23,24] is guaranteed by
monotonic increases of the dual objective function, and global convergence of our
primal-dual framework is guaranteed by monotonicity properties ensured by the
incorporation of our auxiliary set. In fact, all of these types of methods converge
in a finite number of iterations due to these monotonicity properties. It should be
noted that, in the worst case, our auxiliary set could grow to include the indices of
all of the primal variables. However, in the experiments summarized in this paper,
it is seen that in many cases the auxiliary set remains small or even empty. Thus,
we have observed that our framework is particularly efficient when there are a
relatively large number of variables not at their bounds at the optimal solution.

4 Frank E. Curtis et al.

We also briefly remark that other alternatives for solving large-scale QPs are
projected gradient methods, which typically execute line searches to ensure mono-
tonicity in an objective. Approaches of this type—especially those that involve
iterative subspace minimization phases—have proved to be effective for such prob-
lems, provided they are not too ill-conditioned [11,27,30,33]. See the end of §2 for
further comparisons with other related approaches.

The paper is organized as follows. In §2, we describe our framework and prove a
generic global convergence theorem; in particular, we prove a result stating that our
framework is globally convergent when employed to solve both bound-constrained
and generally-constrained strictly convex QPs. In §3, we discuss two instances of
the framework and their relationship to the method in [25]. In §4, we describe the
details of our implementation and then present numerical experiments in §5. These
experiments illustrate that an implementation of our framework is efficient when
employed to solve bound-constrained and generally-constrained strictly convex
QPs, at least those with many degrees of freedom relative to n. Finally, in §6 we
summarize our findings and comment on additional advantages of our framework,
such as the potential incorporation of inexact reduced subproblem solves.

Notation. We use subscripts to denote (subsets of) elements of a vector or matrix;
e.g., with xS we denote the vector composed of the elements in the vector x cor-
responding to those indices in the ordered set S, and with HS1,S2 we denote the
matrix composed of the elements in the matrix H corresponding to those row and
column indices in the ordered sets S1 and S2, respectively. A common exception
occurs when we refer to (subsets of) elements of a vector with an additional sub-
script, such as x∗. In such cases, we denote (subsets of) elements after appending
brackets, such as in [x∗]S .

2 Algorithmic Framework

In this section, we motivate, describe, and prove a global convergence result for
our framework. The problem we consider is the strictly convex QP

minimize
x∈Rn

cTx+ 1
2x
THx

subject to Ax = b, ` ≤ x ≤ u,
(1)

where c ∈ Rn, H ∈ Rn×n is symmetric and positive definite, A ∈ Rm×n with
m ≤ n, b ∈ Rm, and {`, u} ⊂ Rn (i.e., the set of n-dimensional extended real
numbers, which includes infinite values). We assume ` < u and that A has full
row-rank, all of which can be guaranteed by preprocessing the data and removing
fixed variables. If (1) is feasible, then the unique solution x∗ is the point at which
there exist Lagrange multipliers (y∗, z

`
∗, z

u
∗) such that (x∗, y∗, z

`
∗, z

u
∗) satisfies the

Karush-Kuhn-Tucker (KKT) conditions for (1), which is to say that

0 = KKT(x, y, z`, zu) :=

‚‚‚‚‚‚‚‚
0BB@
Hx+ c−ATy − z` + zu

Ax− b
min{x− `, z`}
min{u− x, zu}

1CCA
‚‚‚‚‚‚‚‚ . (2)

A Primal-Dual Active-Set Framework for Convex Quadratic Optimization 5

(The norm used in the definition of the function KKT can be any vector norm on
Rn; our only requirement is that the same norm is used in the definition of the
residual function r defined in equation (8) later on.) On the other hand, if prob-
lem (1) is infeasible, then this can be detected by solving a traditional “Phase 1”
linear optimization problem (LP) to find a point that minimizes violations of the
constraints; see, e.g., [16]. For simplicity in the remainder of our algorithmic de-
velopment and analysis, we ignore the possibility of having an infeasible instance
of problem (1), but note that we have implemented such an infeasibility detection
strategy in our implementation described in §4.

Let the sets of variable and equality constraint indices, respectively, be

N := {1, . . . , n} and M := {1, . . . ,m}.

We associate with the point x∗ the mutually exclusive and exhaustive subsets

A`∗ := {i ∈ N : [x∗]i = `i},
Au∗ := {i ∈ N : [x∗]i = ui},

and I∗ := {i ∈ N : `i < [x∗]i < ui},

representing the subsets of indices corresponding to the lower-active, upper-active,
and inactive optimal primal variables, respectively.

The iterates of our framework constitute a sequence of index sets given as
{(A`k,A

u
k , Ik,Uk)}k≥0, where for each k ≥ 0 the sets A`k, Auk , Ik, and Uk are mutu-

ally exclusive and exhaustive subsets representing a partition of the set of primal
variable indices N . Our use of index sets as iterates makes our approach differ
from many algorithms whose iterates are the primal-dual variables themselves,
but we make this choice as, in our framework, values of the primal-dual variables
are uniquely determined by the index sets. The first three components of each
iterate, namely A`k, Auk , and Ik, are commonly defined in active-set methods and
represent estimates of A`∗, Au∗ , and I∗, respectively. On the other hand, the auxil-
iary set Uk (also referred to as the uncertain set) contains the indices of variables
whose bounds will be enforced explicitly when the corresponding primal-dual so-
lution is computed. As illustrated by Theorem 1 (on page 7) and the results in §3,
our use of Uk allows for global convergence guarantees for our framework, while
the numerical results in §5 illustrate that these guarantees are typically attained
at modest extra computational cost (as compared to the costs when Uk is empty).

If equality constraints are present (i.e., if m 6= 0), then precautions should be
taken to ensure that each iteration of our method is well-defined. Specifically, each
iteration of our framework requires that we have a feasible partition, i.e., a partition
(A`,Au, I,U) such that there exists (xI , xU) satisfying

AM,IxI +AM,UxU = b−AM,A``A` −AM,AuuAu and `U ≤ xU ≤ uU . (3)

Algorithm 1, below, is employed at the beginning of each iteration of our framework
in order to transform a given iterate (A`k,A

u
k , Ik,Uk) into a feasible partition. (We

drop the iteration number subscript in the algorithm as it is inconsequential in
this subroutine. Moreover, at this point we do not provide specific strategies for
choosing the sets S`, Su, SI , and SU in Algorithm 1; we leave such details until §4
where the approach employed in our implementation is described.) Note that if
m = 0, then (3) reduces to `U ≤ xU ≤ uU . In such cases, preprocessing the

6 Frank E. Curtis et al.

data for problem (1) (i.e., to ensure ` < u) has guaranteed that each iterate is
a feasible partition, so running Algorithm 1 is unnecessary. Otherwise, if m > 0,
then Algorithm 1 is well-defined and will produce a feasible partition for any input.
This can be seen by the fact that, in the worst case, the algorithm will eventually
have A` ∪Au = ∅, in which case the feasibility of (1) implies that (3) is satisfiable.

Algorithm 1 Transformation to a feasible partition (Feas)

1: Input (A`
,Au

, I,U) and initialize (A`,Au, I,U)← (A`
,Au

, I,U).
2: while (3) is not satisfiable do
3: Choose any S` ⊆ A` and Su ⊆ Au such that S ← S` ∪ Su 6= ∅.
4: Set A` ← A`\S` and Au ← Au\Su.
5: Choose any (SI ,SU) ⊆ S × S such that SI ∪ SU = S and SI ∩ SU = ∅.
6: Set I ← I ∪ SI and U ← U ∪ SU .
7: end while
8: Return (A`,Au, I,U) =: Feas(A`

,Au
, I,U).

Once a feasible partition is obtained, we use Algorithm 2 to compute primal-
dual variable values corresponding to the current index sets. The procedure com-
putes the primal-dual variables by minimizing the objective of (1) over subsets
of the original variables and constraints, where we have already ensured via Al-
gorithm 1 that the reduced problem (5) is feasible. Again, we drop the iteration
number index in Algorithm 2 as it is inconsequential in this subroutine.

Algorithm 2 Subspace minimization (SM)

1: Input (A`,Au, I,U) such that (3) is satisfiable (i.e., such that (5) is feasible).
2: Set

xA` ← `A` , xAu ← uAu , z`
I∪Au ← 0, and zu

I∪A` ← 0. (4)

3: Let A ← A` ∪ Au, F ← I ∪ U , and (xF , y, z
`
U , z

u
U) be the optimal primal-dual solution of

minimize
xF∈R|F|

1
2
xT
FHF,FxF + xT

F(cF +HF,AxA)

subject to AM,FxF = b−AM,AxA, `U ≤ xU ≤ uU .
(5)

4: Set
z`
A` ← [Hx+ c−ATy]A` and zu

Au ← −[Hx+ c−ATy]Au . (6)

5: Return (x, y, z`, zu) =: SM(A`,Au, I,U).

The steps of Algorithm 2 are easily described. In Step 2, the components of x
in the set A` (Au) are fixed at their lower (upper) bounds, and components of z`

(zu) are fixed to zero corresponding to components of x that are not fixed at their
lower (upper) bounds. In Step 3, a reduced QP is solved in the remaining primal
variables, i.e., those in I and U . This step also determines the dual variables for
the linear equalities and the bound constraints in U . Finally, in Step 4, we set the
dual variables corresponding to those primal variables that were fixed in Step 2.
Notice that when U = ∅, the solution of (5) reduces to the solution of„

HI,I ATM,I
AM,I 0

«„
xI
−y

«
= −

„
cI +HI,AxA
AM,AxA − b

«
. (7)

A Primal-Dual Active-Set Framework for Convex Quadratic Optimization 7

This observation is critical as it shows that, whenever Uk = ∅ in our framework, the
computational cost of Algorithm 2 is dominated by that of solving a reduced linear
system. In practice, the framework chooses U0 to be empty, and only introduces
indices into Uk if necessary to ensure convergence.

The following lemma shows a critical feature of the output of Algorithm 2.
(Recall that we require the vector norm in equation (8) to be that used in the
definition of the KKT function defined in equation (2).)

Lemma 1 If (A`,Au, I,U) is feasible and (x, y, z`, zu) ← SM(A`,Au, I,U), then

r(x, y, z`, zu) = KKT(x, y, z`, zu), where

r(x, y, z`, zu) :=

‚‚‚‚‚‚
0@ min{z`A` , 0}

min{zuAu , 0}
min{0, [x− `]I , [u− x]I}

1A‚‚‚‚‚‚ . (8)

Proof The proof follows by straightforward comparison of KKT(x, y, z`, zu) with
(4), the optimality conditions of (5), and (6). In particular, these conditions guar-
antee that certain elements of the vector in the definition of KKT(x, y, z`, zu) are
equal to zero; the only potentially nonzero elements are those in the vector defin-
ing the residual value r(x, y, z`, zu). ut

It follows from Lemma 1 that if the input (A`,Au, I,U) to Algorithm 2 yields
(x, y, z`, zu) with `I ≤ xI ≤ uI , z`A` ≥ 0, and zuAu ≥ 0, then (x, y, z`, zu) is the
solution to (1). This follows as the procedure in Algorithm 2 ensures that the
resulting primal-dual vector satisfies the first two blocks of equations in (2) as well
as complementarity of the primal and dual variables. The only conditions in (2)
that it does not guarantee for each partition are primal and dual variable bounds.

We now state our algorithmic framework.

Algorithm 3 Primal-dual active-set framework (PDAS)

1: Input (A`
0,Au

0 , I0,U0) and initialize k ← 0.
2: loop
3: Set (A`

k,A
u
k , Ik,Uk)← Feas(A`

k,A
u
k , Ik,Uk) by Algorithm 1.

4: Set (xk, yk, z
`
k, z

u
k)← SM(A`

k,A
u
k , Ik,Uk) by Algorithm 2.

5: If r(xk, yk, z
`
k, z

u
k) = 0, then break.

6: Choose (A`
k+1,A

u
k+1, Ik+1,Uk+1), then set k ← k + 1.

7: end loop
8: Return (xk, yk, z

`
k, z

u
k).

Although we have yet to state specific strategies for updating the index sets
in Step 6 of Algorithm 3, we can prove that it terminates and returns the optimal
solution of (1) as long as, for some k ≥ 0, we have

A`k ⊆ A
`
∗, Auk ⊆ A

u
∗ , and Ik ⊆ I∗. (9)

In other words, Algorithm 3 produces (x∗, y∗, z
`
∗, z

u
∗) satisfying (2) if, for some

iteration number k ≥ 0, the algorithm generates subsets of the optimal index sets.

Theorem 1 If problem (1) is feasible and the kth iterate of Algorithm 3 satisfies (9),

then r(xk, yk, z
`
k, z

u
k) = 0 and (xk, yk, z

`
k, z

u
k) solves problem (1).

8 Frank E. Curtis et al.

Proof Our strategy of proof is as follows. First, we will show that if (9) holds,
then (A`k,A

u
k , Ik,Uk) = Feas(A`k,A

u
k , Ik,Uk), which will imply that Algorithm 1

has no effect on such an iterate in Step 3 of Algorithm 3. Second, we will show
that (x∗, y∗, z

`
∗, z

u
∗) satisfies (4)–(6), where in the case of (5) we mean that the

primal-dual optimality conditions for the subproblem are satisfied. Since the vector
(xk, yk, z

`
k, z

u
k) is uniquely defined by (4)–(6), it will then follow that (xk, yk, z

`
k, z

u
k) =

(x∗, y∗, z
`
∗, z

u
∗), which is the desired result.

To show that, if (9) holds, then Algorithm 1 will have no effect on the partition,
we will show that—due to (9)—the point (x∗, y∗, z

`
∗, z

u
∗) satisfies (3). Since this

will imply that (3) is satisfiable, it will follow that the while loop in Algorithm 1
will not be entered, and hence the initial partition given to Algorithm 1 will be
returned. Let Ak ← A`k ∪A

u
k and Fk ← Ik ∪Uk (as in Algorithm 2). It follows from

the KKT conditions (2) that Ax∗ = b, which with condition (9) implies

AM,Fk
[x∗]Fk

= b−AM,A`
k
[x∗]A`

k
−AM,Au

k
[x∗]Au

k

= b−AM,A`
k
`A`

k
−AM,Au

k
uAu

k
. (10)

In addition, (2) implies ` ≤ x∗ ≤ u, with which we find

`Uk
≤ [x∗]Uk

≤ uUk
. (11)

Hence, (x∗, y∗, z
`
∗, z

u
∗) satisfies (3), so Algorithm 1 does not modify (A`k,A

u
k , Ik,Uk).

Next, we show that (x∗, y∗, z
`
∗, z

u
∗) satisfies (4)–(6). It follows from (9) that

[x∗]A`
k

= `A`
k
, [x∗]Au

k
= uAu

k
, [z`∗]Ik∪Au

k
= 0, and [zu∗]Ik∪A`

k
= 0, (12)

so (4) is satisfied. It then also follows from (2) and (12) that„
HIkIk

HIkUk

HUkIk
HUkUk

«„
[x∗]Ik

[x∗]Uk

«
+

„
HIkAk

HUkAk

«
[x∗]Ak

+

„
cIk

cUk

«
−

ATM,Ik

ATM,Uk

!
y∗ +

„
0

[zu∗ − z`∗]Uk

«
= 0. (13)

Furthermore,

if i ∈ Uk ∩ I∗, then [x∗]i ∈ (li, ui) and [z`∗]i = [zu∗]i = 0; (14a)

if i ∈ Uk ∩ A`∗, then [x∗]i = `i, [z`∗]i ≥ 0, and [zu∗]i = 0; (14b)

if i ∈ Uk ∩ Au∗ , then [x∗]i = ui, [z`∗]i = 0, and [zu∗]i ≥ 0. (14c)

Thus, it follows from (10)–(14) that [x∗]Fk
is the unique solution to (5) with

associated dual values (y∗, [z
`
∗]Uk

, [zu∗]Uk
). Finally, from (2) and (12) we have

[z`∗]A`
k

= [Hx∗ + c−ATy∗ + zu∗]A`
k

= [Hx∗ + c−ATy∗]A`
k

(15a)

and [zu∗]Au
k

= −[Hx∗ + c−ATy∗ − z`∗]Au
k

= −[Hx∗ + c−ATy∗]Au
k
. (15b)

We may now conclude from (10)–(15) that (x∗, y∗, z
`
∗, z

u
∗) satisfies (4)–(6), which

are uniquely satisfied by (xk, yk, z
`
k, z

u
k). Thus, (xk, yk, z

`
k, z

u
k) = (x∗, y∗, z

`
∗, z

u
∗). ut

A Primal-Dual Active-Set Framework for Convex Quadratic Optimization 9

Note that due to potential degeneracy, condition (9) is not necessary for Al-
gorithm 3 to terminate, though it is sufficient. For example, for i ∈ A`∗, we may
find that with i ∈ Ik we obtain [xk]i = `i from (5). This means that Algorithm 3
may terminate with a solution despite an index corresponding to an active bound
being placed in Ik, meaning that Ik 6⊂ I∗. We remark, however, that this type of
case does not inhibit us from proving global convergence for our methods in §3.

Now that our algorithmic framework has been established in Algorithm 3,
we comment further on comparisons of our approach and a few related methods
in the literature. First, the algorithms in [2,3,28] have a similar form to Algo-
rithm 3 and employ index set updates that are similar to that in Algorithm 4,
described in the following section. However, as these algorithms do not aim to
solve generally constrained convex QPs, they do not possess global convergence
guarantees for problem (1). Rather, they guarantee convergence only for certain
classes of convex QPs where the Hessian of the objective function satisfies cer-
tain properties. Another related method is that proposed in [24]—which is based
on the method proposed in [23]—in which the authors propose a dual active-set
algorithm (DASA) which can solve generally constrained convex QPs. Fundamen-
tally, DASA and our PDAS framework differ in various ways. First, they differ
in the structure of the subproblems that arise in the algorithm. Specifically, an
iteration of DASA involves solving a linear system in the dual space, perform-
ing a line search, and—if the algorithm has reached a maximum of a modified
dual function—solving a bound-constrained problem in the primal space to check
for optimality. By contrast, the subproblems solved in PDAS involve primal and
dual variables and the original equality constraints from (1), but with some pri-
mal variables fixed at their bounds and some bound constraints from (1) ignored.
Second, the strategies for updating the indexing sets in DASA are quite different
than those employed in PDAS: DASA uses the dual variables associated with the
equality constraints to generate a new active-set estimate, whereas the strategies
that we propose in the following section merely use the equality constraint multi-
pliers to measure the KKT error. Finally, DASA and our PDAS framework handle
the potential infeasibility of problem (1) differently: DASA uses a proximal point
approach to avoid unbounded dual subproblems, whereas PDAS employs an initial
infeasibility detection phase and Algorithm 1 to guarantee that (5) is feasible.

3 Strategies for Updating the Indexing Sets

In this section, we describe several strategies for updating the index sets in Algo-
rithm 3. That is, we describe subroutines to be employed in Step 6 of Algorithm 3
to choose iterate k+ 1. Recall that Theorem 1 shows that if an update yields (9),
then Algorithm 3 will terminate with a solution to problem (1). We begin by de-
scribing an extension of the strategy of Hintermüller, Ito, and Kunisch [25] that
yields this behavior in special cases, but not for all strictly convex QPs. We then
describe two novel techniques that yield global convergence in the general case.

10 Frank E. Curtis et al.

3.1 Hintermüller, Ito, and Kunisch update

The first strategy we describe, written as Algorithm 4 below, is an extension of the
technique used in the method introduced by Hintermüller, Ito, and Kunisch [25].
In particular, if m = 0, `i = −∞ for all i ∈ N , and U0 ← ∅, then Algorithm 3 with
Step 6 employing Algorithm 4 is identical to the algorithm in [25, Section 2].

Algorithm 4 Updating strategy inspired by Hintermüller, Ito, and Kunisch [25]

1: Input (A`
k,A

u
k , Ik,Uk) and (xk, yk, z

`
k, z

u
k).

2: Set

Uk+1 ← Uk, (16a)

A`
k+1 ← {i ∈ (N \ Uk+1) : [xk]i < `i, or i ∈ A`

k and [z`
k]i ≥ 0}, (16b)

Au
k+1 ← {i ∈ (N \ Uk+1) : [xk]i > ui, or i ∈ Au

k and [zu
k]i ≥ 0}, (16c)

and Ik+1 ← N \ (Uk+1 ∪ A`
k+1 ∪ A

u
k+1). (16d)

3: Return (A`
k+1,A

u
k+1, Ik+1,Uk+1).

The following is an example of a result that can be proved with this strategy
when H is assumed to be a perturbation of an M-matrix; see [25, Theorem 3.4].
A matrix M is said to be an M-matrix if it is positive definite and Mi,j ≤ 0 for all
i 6= j, from which it can be shown that M−1 ≥ 0.

Theorem 2 Suppose m = 0, `i = −∞ for all i ∈ N , U0 ← ∅, and H = M + K

where M ∈ Rn×n is an M-matrix and K ∈ Rn×n. If ‖K‖1 is sufficiently small, then

problem (1) has a unique solution (x∗, z
`
∗, z

u
∗) and Algorithm 3 with Step 6 employing

Algorithm 4 yields (xk, z
`
k, z

u
k) = (x∗, z

`
∗, z

u
∗) for some k ≥ 0.

We also show in Appendix A that Algorithm 3 with Uk = ∅ for all k ≥ 0 is
equivalent to a semi-smooth Newton method. Hintermüller, Ito, and Kunisch state
similar results for the case m = 0. It should be noted, however, that their proof ac-
tually only shows that iterations after the first one are equivalent to a semi-smooth
Newton method. This caveat is important as they use this equivalence to prove
that their method converges superlinearly from any starting point sufficiently close
to the solution. Such a result can only be true for the iterate after their initial iter-
ate due to the manner in which their method is initialized. For example, consider a
starting point obtained by perturbing the optimal solution by an arbitrarily small
amount into the strict interior of the feasible region. Their algorithm would then
begin by computing the unconstrained minimizer of the quadratic objective, which
can be arbitrarily far from the solution, meaning that fast local convergence could
not commence until the algorithm produces another iterate within a sufficiently
small neighborhood of the optimal solution. It should also be noted that, since
their algorithm converges (in special cases) in a finite number of iterations, the
fact that it converges superlinearly is immediate, regardless of [25, Theorem 3.1].

The main disadvantage of the strategy in Algorithm 4 when U0 = ∅ is that it
does not guarantee convergence for all strictly convex quadratic objective func-
tions. This should not be a surprise as Theorem 2 makes the assumption that H
is a (perturbed) M-matrix, which is restrictive. The following three-dimensional

A Primal-Dual Active-Set Framework for Convex Quadratic Optimization 11

example shows that the strategy may fail if H is positive definite, but not an
M-matrix. We provide this example as we also use it later on to show that our
techniques (which may set Uk 6= ∅) yield convergence on this same problem.

Example 1 Consider problem (1) with

m = 0, H =

0@ 4 5 −5
5 9 −5
−5 −5 7

1A , c =

0@ 2
1
−3

1A , ` =

0@−∞−∞
−∞

1A , and u =

0@0
0
0

1A (17)

and the initial index sets

(A`0,Au0 , I0,U0) = (∅, ∅, {1, 2, 3}, ∅).

Table 1 illustrates that the updating strategy in Algorithm 4 generates a cycle and
thus fails to provide the optimal solution. In particular, the iterates in iterations
1 and 4 are identical, which indicates that a cycle will continue to occur. Indeed,
if any of the index partitions that define iterations 0–3 are used as the initial
partition, then the updating strategy generates the same cycle. Since there are 8
possible initial index sets for this problem (with U0 = ∅), it follows that at least
half of them will lead to failure.

Table 1 Result of Algorithm 3 employed to solve the problem in Example 1 when iterates
are updated via Algorithm 4; the iterates cycle indefinitely.

k A`
k Au

k Ik Uk xk zu
k

0 ∅ ∅ {1, 2, 3} ∅ (−3, 1,−1) (0, 0, 0)

1 ∅ {2} {1, 3} ∅ (1
3
, 0, 2

3
) (0, 2

3
, 0)

2 ∅ {1, 2, 3} ∅ ∅ (0, 0, 0) (−2,−1, 3)

3 ∅ {3} {1, 2} ∅ (− 13
11
, 6
11
, 0) (0, 0,− 2

11
)

4 ∅ {2} {1, 3} ∅ (1
3
, 0, 2

3
) (0, 2

3
, 0)

...
...

...
...

...
...

...

We remark that it can be shown that the strategy in Algorithm 4 will lead
to convergence for any strictly-convex QP when n ≤ 2; hence, we created this
example with n = 3. See also [13, Proposition 4.1].

To prevent cycling and ensure convergence from arbitrary initial iterates for
n ≥ 3, the following subsections focus on two updating strategies for the index sets
that allow for the size of Uk to be changed (if needed) as the iterations proceed.

3.2 Update based on monitoring index set changes

The goal of our first new updating strategy for the index sets is to ensure that (9) is
eventually satisfied. This is desirable as then convergence of the associated iterates
is guaranteed by Theorem 1. The strategy is based on a simple observation: Since
there are only a finite number of distinct choices of the index sets, condition (9)
will eventually be satisfied if we prevent an infinite number of cycles of any length.

12 Frank E. Curtis et al.

Of course, taking action only after a cycle has occurred may be inefficient for
large-scale problems as the cycle lengths can be exceedingly large. However, we
can (preemptively) avoid cycling by monitoring the number of times indices have
moved between the index sets. This idea also ties in with our numerical experience
as we have often found that when the method in the previous section does not
yield convergence, it is primarily due to a handful of indices that do not quickly
settle into an index set. Variables that change index sets numerous times may be
considered sensitive and are prime candidates for membership in Uk.

To keep track of the number of times each index changes between index sets,
we define a counter sequence {qik} for each i ∈ N . Using these counters to monitor
the number of times each index changes set membership, we obtain the updating
strategy in Algorithm 5. (The algorithm is written to be as generic as possible,
but precise strategies for choosing S`, Su, and SI and updating the counters in
Step 5 is given in §4.) The motivation for the strategy is to mimic Algorithm 4,
but to add an index (or indices) to Uk+1 only if an index has changed index set
membership too many times as determined by a tolerance qmax ≥ 1. Note that
when an index is moved into Uk+1, the counters (for all indices) may be reduced
or reset to avoid indices being moved into {Uk} too frequently. (Again, due to the
computational costs of solving instances of (5), we remark that it is desirable to
keep the elements of the sequence {|Uk|} small.)

Algorithm 5 Updating strategy based on monitoring index set changes

1: Input (A`
k,A

u
k , Ik,Uk), (xk, yk, z

`
k, z

u
k), (q1k, . . . , q

n
k), and qmax ≥ 1.

2: if qi
k ≥ q

max for some i ∈ N then

3: Choose S` ⊆ A`
k, Su ⊆ Au

k , and SI ⊆ Ik such that S ← S` ∪ Su ∪ SI 6= ∅.
4: Set A`

k+1 ← A
`
k\S

`, Au
k+1 ← A

u
k\S

u, Ik+1 ← Ik\SI , and Uk+1 ← Uk ∪ S.

5: Set qi
k+1 ∈ {0, . . . , q

i
k} for all i ∈ N .

6: else
7: Set (A`

k+1,A
u
k+1, Ik+1,Uk+1) by (16).

8: Set qi
k+1 ← qi

k + 1 for all i ∈ A`
k+1 such that i /∈ A`

k.

9: Set qi
k+1 ← qi

k + 1 for all i ∈ Au
k+1 such that i /∈ Au

k .

10: Set qi
k+1 ← qi

k + 1 for all i ∈ Ik+1 such that i /∈ Ik.
11: end if
12: Return (A`

k+1,A
u
k+1, Ik+1,Uk+1).

The following lemma shows that Algorithm 5 guarantees that every iteration
will either move a nonempty subset of indices into the uncertain set, or our index
counters will increase.

Lemma 2 Suppose that problem (1) is feasible. If Algorithm 3 does not terminate

before or in iteration k, then by employing Algorithm 5 in Step 6, we have that either

|Uk+1| > |Uk| or qik+1 > qik for at least some i ∈ N .

Proof If Uk = N , then (3) is satisfiable and as a result of solving (5) we obtain
(x∗, y∗, z

`
∗, z

u
∗) solving (1). Consequently, Algorithm 3 terminates in iteration k.

Thus, we can assume that Uk 6= N . Moreover, if qik ≥ qmax for some i ∈ N , then
it is clear that Algorithm 5 will yield |Uk+1| > |Uk|. Thus, we may assume that
qik < qmax for all i ∈ N . All that remains is to show that, under the assumptions
of the lemma, (16) will change at least one index from some index set to another.

A Primal-Dual Active-Set Framework for Convex Quadratic Optimization 13

To derive a contradiction, suppose that (16) yields (A`k+1,A
u
k+1, Ik+1,Uk+1) =

(A`k,A
u
k , Ik,Uk). By the procedure in Algorithm 2, it follows that

[xk]A`
k

= [`]A`
k
, [xk]Au

k
= [u]Au

k
, [z`k]Ik∪Au

k
= 0, and [zuk]Ik∪A`

k
= 0, (18)

and the optimality conditions for subproblem (5) ensure that

min([xk − `]Uk
, [z`k]Uk

) = min([u− xk]Uk
, [zuk]Uk

) = 0. (19)

Algorithm 5 and the assumption that there are no set changes imply that

Ik+1 = {i : i /∈ (A`k+1 ∪ A
u
k+1 ∪ Uk+1)} = Ik,

from which we conclude that

[`]Ik
≤ [xk]Ik

≤ [u]Ik
. (20)

Similarly, Algorithm 5 and the same assumption imply that

A`k+1 = {i : [xk]i < `i, or i ∈ A`k and [z`k]i ≥ 0} = A`k
and Auk+1 = {i : [xk]i > ui, or i ∈ Auk and [zuk]i ≥ 0} = Auk

so that
[z`k]A`

k
≥ 0 and [zuk]Au

k
≥ 0. (21)

With the residual function r defined by (8), it follows from (18)–(21) that we have
r(xk, yk, z

`
k, z

u
k) = 0, which contradicts the assumption of the lemma that says that

Algorithm 3 does not terminate in iteration k. ut

The global convergence of Algorithm 3 with the updating strategy in Algo-
rithm 5 can now be proved from arbitrary initial iterates. The simple, key idea to
the proof is that the monotonic nondecrease of the size of the auxiliary set will,
in the worst case, eventually lead to Uk = N for some large k, in which case the
algorithm would produce the optimal solution (and terminate) in iteration k. We
stress, however, that while the proof relies on such worst-case behavior, we have
never witnessed such an occurrence in practice. Indeed, as seen in our experiments
in §5, we rarely find the auxiliary set ever including more than a few indices.

Theorem 3 If problem (1) is feasible, then Algorithm 3 with Step 6 employing Algo-

rithm 5 solves problem (1) in a finite number of iterations.

Proof To derive a contradiction, suppose that Algorithm 3 computes infinitely
many iterates. Then, by Lemma 2, each iteration will either yield |Uk+1| > |Uk| or
qik+1 > qik for at least some i ∈ N . If the algorithm continues without terminating,

then eventually the increases in the components of the elements of {(q1k, . . . , q
n
k)}

will yield Uk = N for some sufficiently large k. However, as in the proof of Lemma 2,
this means that (3) will be satisfiable, solving (5) will yield (x∗, y∗, z

`
∗, z

u
∗) solving

(1), and the algorithm will terminate, contradicting the supposition that an infinite
number of iterations will be performed. ut

Table 2 shows the behavior of Algorithm 3 on the problem in Example 1 given
on page 11. By using Algorithm 5 to update the index sets with qmax ← 1 (and
setting qik+1 to zero whenever an element is moved into Uk+1), the algorithm
converges to the solution of the problem.

14 Frank E. Curtis et al.

Table 2 Result of Algorithm 3 employed to solve the problem in Example 1 when iterates
are updated via Algorithm 5.

k A`
k Au

k Ik Uk xk zu
k (q1k, q

2
k, q

3
k)

0 ∅ ∅ {1, 2, 3} ∅ (−3, 1,−1) (0, 0, 0) (0, 0, 0)

1 ∅ {2} {1, 3} ∅ (1
3
, 0, 2

3
) (0, 2

3
, 0) (0, 1, 0)

2 ∅ {1, 3} ∅ {2} (0,− 1
18
, 0) (− 31

18
,− 1

2
, 49
18

) (1, 0, 1)

3 ∅ {3} ∅ {1, 2} (− 1
2
, 0, 0) (0, 3

2
, 1
2

) (0, 0, 0)

3.3 Update based on reducing the KKT error

The updating strategy described in this section is based on a technique for ensuring
reductions in the KKT residual. In particular, we adopt a nonmonotonic watch-dog
strategy employed in various optimization methods [9,19,22,34,35]. Since there
are only a finite number of partitions of the index sets, by ensuring that the
KKT residual is reduced over sequences of iterations, the residual is eventually
reduced to zero. As in the strategy in the previous subsection, the aim is to mimic
Algorithm 4, but to move an index (or indices) to the uncertain set if the new
KKT residual is not sufficiently small. One additional benefit of this approach is
that it allows for elements to be removed from the uncertain set, which can be
done whenever indices remain in the same index set as the residual is reduced.

The steps of Algorithm 6 can be summarized as follows. First, a trial iterate
(A`k+1,A

u
k+1, Ik+1,Uk+1) is chosen via (16) and then the Feas operator, i.e., Al-

gorithm 1, is applied to produce a feasible partition. If the resulting index sets
yield (through the SM operator, i.e., Algorithm 2) a primal-dual solution with a
corresponding KKT value strictly less than the maximum of the most recent p
KKT values, then the algorithm continues with (A`k+1,A

u
k+1, Ik+1,Uk+1). Other-

wise, (A`k+1,A
u
k+1, Ik+1,Uk+1) is reset to (A`k,A

u
k , Ik,Uk) and indices are moved

to Uk+1 until the resulting feasible partition yields a corresponding KKT value
less than the maximum of the most recent p KKT values. In either case, once
(A`k+1,A

u
k+1, Ik+1,Uk+1) is chosen in this manner, an optional step is available

to (potentially) remove elements from Uk+1. If this step is taken, then the pri-
mal variables corresponding to the most recent p elements of {Uk} are considered.
Specifically, the sets T `, T u, and T I are constructed, representing indices whose
variables have remained at their lower bounds, at their upper bounds, or interior to
their bounds, respectively, in the last p iterations. If any of these sets are nonempty,
then there is a strong indication that overall computational costs can be reduced
by moving elements into A`k+1, Auk+1, or Ik+1. This is done and, importantly, it
has no effect on the KKT value corresponding to iterate k + 1.

For the strategy described in Algorithm 6, we have the following lemma.

Lemma 3 Suppose that problem (1) is feasible. If Algorithm 3 does not terminate

before or in iteration k, then by employing Algorithm 6 in Step 6, iteration k+1 yields

r(xk+1, yk+1, z
`
k+1, z

u
k+1) < max

j∈{1,...,p}
{r(xk+1−j , yk+1−j , z

`
k+1−j , z

u
k+1−j)}. (22)

Proof Under the assumption that Algorithm 3 has not yet terminated, we have

max
j∈{1,...,p}

{r(xk+1−j , yk+1−j , z
`
k+1−j , z

u
k+1−j)} > 0. (23)

A Primal-Dual Active-Set Framework for Convex Quadratic Optimization 15

Algorithm 6 Updating strategy based on ensuring KKT residual decrease

1: Input (A`
k,A

u
k , Ik,Uk), p ≥ 1, and {(xk+1−j , yk+1−j , z

`
k+1−j , z

u
k+1−j)}j∈{1,...,p}.

2: Set (A`
k+1,A

u
k+1, Ik+1,Uk+1) by (16).

3: Set (A`
k+1,A

u
k+1, Ik+1,Uk+1)← Feas(A`

k+1,A
u
k+1, Ik+1,Uk+1).

4: Set (xk+1, yk+1, z
`
k+1, z

u
k+1)← SM(A`

k+1,A
u
k+1, Ik+1,Uk+1).

5: if r(xk+1, yk+1, z
`
k+1, z

u
k+1) ≥ maxj∈{1,...,p}{r(xk+1−j , yk+1−j , z

`
k+1−j , z

u
k+1−j)} then

6: Reset (A`
k+1,A

u
k+1, Ik+1,Uk+1)← (A`

k,A
u
k , Ik,Uk).

7: repeat
8: Choose S ← S` ∪ Su ∪ SI 6= ∅ with

S` ⊆ {i ∈ A`
k+1 : z`

k < 0}
Su ⊆ {i ∈ Au

k+1 : zu
k < 0}

and SI ⊆ {i ∈ Ik+1 : min{[xk − `]i, [u− xk]i} < 0}.

9: Set A`
k+1← A

`
k+1\S

`, Au
k+1← A

u
k+1\S

u, Ik+1← Ik+1\SI , and Uk+1← Uk+1∪S.

10: Set (A`
k+1,A

u
k+1, Ik+1,Uk+1)← Feas(A`

k+1,A
u
k+1, Ik+1,Uk+1).

11: Set (xk+1, yk+1, z
`
k+1, z

u
k+1)← SM(A`

k+1,A
u
k+1, Ik+1,Uk+1).

12: until r(xk+1, yk+1, z
`
k+1, z

u
k+1) < maxj∈{1,...,p}{r(xk+1−j , yk+1−j , z

`
k+1−j , z

u
k+1−j)}

13: end if
14: (Optional) Choose T ← T ` ∪ T u ∪ T I with

T ` ⊆

8<:i ∈
k+1\

l=k+2−p

Ul : [xl]i = `i for l ∈ {k + 2− p, . . . , k + 1}

9=; ,

T u ⊆

8<:i ∈
k+1\

l=k+2−p

Ul : [xl]i = ui for l ∈ {k + 2− p, . . . , k + 1}

9=; ,

and T I ⊆

8<:i ∈
k+1\

l=k+2−p

Ul : `i < [xl]i < ui for l ∈ {k + 2− p, . . . , k + 1}

9=; ,

then set A`
k+1← A

`
k+1∪T

`, Au
k+1← A

u
k+1∪T

u, Ik+1← Ik+1∪T I , and Uk+1← Uk+1\T .

15: Return (A`
k+1,A

u
k+1, Ik+1,Uk+1).

If the condition in Step 5 holds (i.e., (22) does not hold), then the strategy re-
verts to the kth partition. In such cases, the strategy iteratively moves indices
corresponding to nonzero elements in the vector defining r(xk+1, yk+1, z

`
k+1, z

u
k+1)

(recall (8)) to the index set Uk+1 until a strict reduction has been obtained (i.e.,
until (22) holds). This procedure will terminate finitely as, in the worst-case, the
method eventually has Uk+1 = N , in which case r(xk+1, yk+1, z

`
k+1, z

u
k+1) = 0.

Finally, observe that the procedure for removing elements from Uk+1 has no effect
on r(xk+1, yk+1, z

`
k+1, z

u
k+1) since indices are only removed if their corresponding

primal and dual variables do not contribute to any nonzero values in the vectors
defining r(xk+1, yk+1, z

`
k+1, z

u
k+1) and the r values in (23). ut

We now have the following theorem. The key idea to its proof is that, by
ensuring monotonic decrease in an appropriately defined merit function (see (24)),
the KKT error corresponding to the algorithm iterates will eventually vanish.

Theorem 4 If problem (1) is feasible, then Algorithm 3 with Step 6 employing Algo-

rithm 6 solves problem (1) in a finite number of iterations.

16 Frank E. Curtis et al.

Proof The result follows since by Lemma 3 we have that Algorithm 6 guarantees
max

j∈{1,...,p+1}
{r(xk+1−j , yk+1−j , z

`
k+1−j , z

u
k+1−j)}

ff
(24)

is monotonically strictly decreasing. (Note that in the elements of this sequence,
the max is taken from j ∈ {1, . . . , p+ 1}.) This is the case since, due to the strict
inequality in (22), there can be at most p consecutive iterations where the right-
hand side of (22) does not strictly decrease, and after p+1 iterations there must be
a strict decrease. Since there are only a finite number of partitions, we eventually
obtain a sufficiently large k such that r(x`k, y

u
k , z

`
k, z

u
k) = 0. ut

Table 3 contains the output from solving the strictly convex QP in Example 1
on page 11 using Algorithm 3 with p = 1.

Table 3 Result of Algorithm 3 employed to solve the problem in Example 1 when iterates
are updated via Algorithm 6. In the algorithm, the `∞-norm is used in the definition of the
residual function r (recall (8)) and we define rk := r(xk, z

u
k).

k A`
k Au

k Ik Uk xk zu
k rk

0 ∅ ∅ {1, 2, 3} ∅ (−3, 1,−1) (0, 0, 0) 1

1 ∅ {2} {1, 3} ∅ (1
3
, 0, 2

3
) (0, 2

3
, 0) 2

3

2 ∅ {1, 2, 3} ∅ ∅ (0, 0, 0) (−2,−1, 3) 2

3 ∅ {2, 3} ∅ {1} (− 1
2
, 0, 0) (0, 3

2
, 1
2

) 0

4 Implementation details

In this paper, we have proposed and analyzed two instances of the generic frame-
work provided as Algorithm 3, in addition to an instance representing an extension
of the algorithm in [25]. In this section, we describe an implementation in Matlab
that incorporates all of these approaches. The main motivation for our implemen-
tation (and the numerical results in the following section) is to illustrate that while
Algorithm 3 paired with the updating strategy in Algorithm 4 is extremely effi-
cient for solving many strictly-convex QPs, it can lead to cycling, especially when
applied to solve large and/or ill-conditioned problems. Our updating strategies in
Algorithms 5 and 6, on the other hand, are globally convergent and require only a
modest amount of additional computational effort. Specifically, our implementa-
tion incorporates the index sets {Uk} to ensure global convergence, but attempts
to keep these sets small so that the subspace minimization procedure (SM) is not
much more expensive than solving a reduced linear system.

We specify the details of our implementation by considering, in turn, the sub-
routines in Algorithm 3. First, Algorithm 1 is responsible for detecting the po-
tential infeasibility of a partition and, if necessary, modifying the partition to
a feasible one. The infeasibility detection phase involves the solution of a linear
optimization problem (LP) that minimizes violations of the constraints in (5):

minimize
xF ,r,s

eT (r + s)

subject to AM,FxF = b−AM,AxA + r − s, `U ≤ xU ≤ uU , (r, s) ≥ 0,
(25)

A Primal-Dual Active-Set Framework for Convex Quadratic Optimization 17

where e ∈ Rm is vector of ones of appropriate length, A and F are defined as in
Step 3 of Algorithm 2, and xA is defined as it is set in Step 2 of Algorithm 2. For
the first component of the starting point for solving this problem, call it x0

F , we
choose the projection of the most recent primal-dual solution estimate onto the
feasible region of the bound constraints in (5); i.e.,

x0
F ← (x0

I , x
0
U), where x0

I ← [xk−1]I and x0
U ← max{`U ,min{[xk−1]U , uU}}.

We then set the initial values for the slack variables to be

r0 = max{0, AM,AxA +AM,Fx
0
F − b}

and s0 = max{0, b−AM,AxA −AM,Fx
0
F}.

CPLEX’s primal simplex method is applied to solve (25). In many cases, (25) is
solved at this initial point. In general, however, (25) is solved via an LP solution
method and, when (3) is satisfiable, the resulting solution (x∗F , r

∗, s∗) yields eT (r∗+
s∗) = 0. (In fact, due to numerical inaccuracies, we consider a given partition to
be feasible as long as eT (r∗ + s∗) ≤ ε for a small constant ε > 0.) If we find that
this condition does not hold, then this implies that the active set A` ∪ Au should
have elements removed. Algorithm 1 is motivated by the fact that infeasibility
of (3) implies that too many variables are fixed to their bounds. Based on this
observation, our implementation transforms the partition into a feasible one by
iteratively moving an index from A` ∪ Au to I. The index to be moved, call it
j, is selected as one that, if included in I, would potentially lead to the largest
reduction in infeasibility; i.e., with ai defined as the ith column of A, we choose

j ← argmin
i∈A`∪Au

„
min
∆xi

1
2‖AM,AxA + ai∆xi +AM,Fx

∗
F − b‖

2
2

«
,

which can be computed via |A` ∪ Au| minimizations of one-dimensional convex
quadratics. (If multiple indexes yield the same objective value for the inner mini-
mization problem, then our implementation selects the smallest such index.)

Our implementation of Algorithm 2 is relatively straightforward. Indeed, the
only step that requires specification is the method employed to solve subproblem
(5). If |U| = 0, then the solution of (5) is obtained by solving the reduced linear
system (7); in such cases, we employ Matlab’s built-in "\" routine to solve this
system. If |U| 6= 0, then problem (5) is a generally-constrained QP and we employ
the active-set method implemented in the qpOASES package [12].

We now turn to the details of our implementation of our strategies in Algo-
rithms 5 and 6. Due to the increased computational costs of the SM subroutine
when Uk is large, we have implemented these strategies so that |Uk+1| ≤ |Uk|+ 1
for all k. In Algorithm 5, we implement Step 3 by choosing S as the smallest index
in {i ∈ N : qik = maxj∈N qjk}, and we implement Step 5 by setting qik+1 ← 0 for
all i ∈ N . Similarly, in Algorithm 6, we implement Step 8 by choosing S as the
index in A`k+1 ∪ A

u
k+1 ∪ Ik+1 corresponding to the element of the vector defining

r(xk+1, yk+1, z
`
k+1, z

u
k+1) (recall (8)) with the largest absolute value. (If there are

more than one such indices in A`k+1 ∪ A
u
k+1 ∪ Ik+1, then we choose the smallest

such index.) Finally, due to numerical inaccuracies in the SM routine, the idealized
conditions in Step 12 of Algorithm 6 are inappropriate in practice for removing

18 Frank E. Curtis et al.

elements from the set Uk+1. (In particular, since variables may never be set ex-
actly at their bounds, those conditions would typically consider all variables to be
inactive in all solutions, which would be inappropriate.) Alternatively, we perform
this step by defining 0 < εA < εI and setting

T ` ←

8<:i ∈
k+1\

l=k+2−p
Ul : [xl]i ≤ `i + εA for l ∈ {k + 2− p, . . . , k + 1}

9=; ,

T u ←

8<:i ∈
k+1\

i=k+2−p
Ul : [xl]i ≥ ui − εA for l ∈ {k + 2− p, . . . , k + 1}

9=; , and

T I ←

8<:i ∈
k+1\

i=k+2−p
Ul : `i + εI ≤ [xl]i ≤ ui − εI for l ∈ {k + 2− p, . . . , k + 1}

9=; .

That is, we choose a relatively tight (but still nonzero) tolerance for determining
an index to be active and a relatively large tolerance for determining an index to
be inactive. Primal variables with values between εA and εI are considered too
ambiguous to be determined as active or inactive.

The numerical results in the following section support our claim that both
updating strategies effectively prevent |Uk| from becoming large.

5 Numerical Results

We tested our implementation of Algorithm 3 by solving randomly generated prob-
lems with various numbers of variables (n), constraints (m), and condition numbers
of H (Hcond). We generated H via Matlab’s sprandsym routine and generated A

via Matlab’s randn routine. The problems were generated so that there would
(roughly) be an equal number of lower-active, upper-active, and inactive primal
variables in the optimal solution. The algorithms were tested in Matlab 7.12.0.635
(R2011a) on a 64-bit machine with 16 processors running a Linux environment.

For all of our experiments, the components (A`0,Au0 , I0) of the initial parti-
tion were randomly generated while U0 was set to ∅. Algorithm 5 was run with
qmax ← 5 and Algorithm 6 (with and without step 14) was run with p← 5. These
values were chosen as they resulted in good performance in our experiments. A
problem was declared to be solved successfully by an algorithm if for some k it
obtained r(xk, yk, z

`
k, z

u
k) ≤ 10−6, where the `∞-norm was used in the definition

of r. However, we set an iteration limit for each problem as 1.1n; i.e., if for a
given problem an algorithm failed to satisfy our tolerance for the KKT error in
1.1n iterations, then we say that the algorithm failed to solve that problem. The
tolerance parameter ε > 0 (see the discussion following problem (25)) was set to
10−8 and for Algorithm 6 we set εA ← 10−8 and εI ← 10−2.

Hereinafter, we refer to Algorithm 3 paired with the updating strategy in Al-
gorithm 4 simply as “Algorithm 4”, and similarly for Algorithms 5 and 6. We
first compare the algorithms when solving strictly convex bound-constrained QPs
(BQPs). (Recall that for bound-constrained problems, the Feas routine, i.e., Al-
gorithm 1, is never invoked.) We tested problems with all combinations of num-
ber of variables (n) in {102, 103, 104} and condition numbers for H (Hcond) in

A Primal-Dual Active-Set Framework for Convex Quadratic Optimization 19

{102, 104, 106}. We generated 50 problems for each of these 9 combinations and
report, in Tables 4–8, averages (and some standard deviations) of performance
measures over these 50 runs. For each combination, all 50 problems were solved
unless otherwise indicated, and in cases when fewer than the 50 problems were
solved, the statistics are computed only over those runs that were successful. In
fact, this occurred only for the results in Table 4; see the caption for that table.

In Tables 4–7, we present results for Algorithms 4, 5, and 6. The first three
statistics that we report are the average number of iterations (µ(#Iter)), the stan-
dard deviation of the number of iterations (σ(#Iter)), and the average number
of calls to Algorithm 2 (µ(#SM)). In Tables 4 and 5, the number of calls to Algo-
rithm 2 is equal to the number of iterations (plus 1 as the SM routine is called
in the last iteration before computing the final KKT error), but in Tables 6 and
7 the number of calls to Algorithm 2 may be relatively larger due to potential
additional calls to the SM routine while updating the index set partition.

The next statistics that we report represent a breakdown between two types
of calls to Algorithm 2. In particular, if Uk = ∅, then the major computational
component of the call is a linear system solve, which (as has already been men-
tioned) is performed via Matlab’s built-in "\" routine; otherwise, if Uk 6= ∅, we
solve the corresponding bound-constrained subproblem with the qpOASES pack-
age. In the former type of iteration we increment a “linear system” counter (by 1),
whereas in the latter type of iteration we increment a “quadratic subproblem iter-
ation” counter (by the number of iterations reported by qpOASES). In the tables,
we report the average total number of linear systems solved (µ(#LS)), the stan-
dard deviation of the number of linear systems solved (σ(#LS)), the average total
number of iterations of qpOASES summed over all calls to it (µ(#QP-Iter)), and
the standard deviation of the total number of qpOASES iterations (σ(#QP-Iter)).
When observing these results, it is important to note that when the initial point
for solving a QP is optimal, qpOASES reports zero iterations were performed.

The last statistics that we report relate to the cardinality of the uncertain
sets in the experiments. For a given run of an algorithm to solve a given problem
instance, let K represent the final iteration number. In the tables, we report the
average cardinality of UK (µ(Last-|U|)), the average of the mean cardinality of
the elements of {Uk}Kk=0 (µ(Avg-|U|)), and the standard deviation of the mean
cardinality of the elements of {Uk}Kk=0 (σ(Avg-|U|)).

Since Algorithm 4 maintains Uk = ∅ for all k, we omit columns (that would oth-
erwise appear in Table 4) corresponding to qpOASES iterations and cardinalities
of the uncertain set since these values are all zero.

Table 4 shows that Algorithm 4 is generally very efficient, but may not con-
verge. On the other hand, Algorithms 5 and 6 (see Tables 5–7) solved all problems
in our experiments, illustrating that their global convergence guarantees are bene-
ficial in practice. Note that in Tables 5–6, a “µ(Last-|U|)” equal to zero indicates
that the algorithm is behaving identically to Algorithm 4. As this occurs often,
particularly in Table 6, this illustrates that Algorithms 5 and 6 are as efficient
as Algorithm 4 for many instances in our experiments. Moreover, even when this
performance measure is nonzero, it is typically very small (especially when consid-
ered relative to n) illustrating that our global convergence guarantees are attained
at modest additional effort. This is further confirmed by the observation that the
total qpOASES iterations (µ(#QP-Iter)) is often very small (especially relative to
n). We also remark that the optional strategy in Algorithm 6 yields some benefits

20 Frank E. Curtis et al.

Table 4 Results of Algorithm 4 employed to solve BQPs. Statistics followed by † were com-
puted only over 45 (of 50) successful runs. Similarly, statistics followed by ‡ were computed
only over 46 (of 50) successful runs. All other statistics were computed over 50 successful runs.

n Hcond µ(#Iter) σ(#Iter) µ(#SM) µ(#LS) σ(#LS)
1e+02 1e+02 3.78e+00 6.79e-01 4.78e+00 4.78e+00 6.79e-01
1e+02 1e+04 5.14e+00 9.69e-01 6.14e+00 6.14e+00 9.69e-01
1e+02 1e+06 6.22e+00 1.06e+00 7.22e+00 7.22e+00 1.06e+00
1e+03 1e+02 4.78e+00 6.16e-01 5.78e+00 5.78e+00 6.16e-01
1e+03 1e+04 6.64e+00 1.05e+00 7.64e+00 7.64e+00 1.05e+00
1e+03 1e+06 8.02e+00 1.06e+00 9.02e+00 9.02e+00 1.06e+00
1e+04 1e+02 5.80e+00 4.95e-01 6.80e+00 6.80e+00 4.95e-01
1e+04 1e+04 8.24e+00† 7.43e-01† 9.24e+00† 9.24e+00† 7.43e-01†
1e+04 1e+06 1.01e+01‡ 1.14e+00‡ 1.11e+01‡ 1.11e+01‡ 1.14e+00‡

Table 5 Results of Algorithm 5 employed to solve BQPs.

n Hcond µ(#Iter) σ(#Iter) µ(#SM) µ(#LS) σ(#LS)
1e+02 1e+02 3.78e+00 6.79e-01 4.78e+00 4.78e+00 6.79e-01
1e+02 1e+04 5.14e+00 9.69e-01 6.14e+00 6.04e+00 8.56e-01
1e+02 1e+06 6.20e+00 1.05e+00 7.20e+00 6.74e+00 8.03e-01
1e+03 1e+02 4.78e+00 6.16e-01 5.78e+00 5.78e+00 6.16e-01
1e+03 1e+04 6.60e+00 1.05e+00 7.60e+00 6.82e+00 8.96e-01
1e+03 1e+06 8.00e+00 1.07e+00 9.00e+00 6.60e+00 9.90e-01
1e+04 1e+02 5.80e+00 4.95e-01 6.80e+00 6.62e+00 5.30e-01
1e+04 1e+04 9.28e+00 3.89e+00 1.03e+01 6.02e+00 1.41e-01
1e+04 1e+06 1.07e+01 2.73e+00 1.17e+01 6.00e+00 0.00e+00

n Hcond µ(#QP-Iter) σ(#QP-Iter) µ(Last-|U|) µ(Avg-|U|) σ(Avg-|U|)
1e+02 1e+02 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00
1e+02 1e+04 1.20e-01 8.49e-01 6.00e-02 1.42e-02 6.17e-02
1e+02 1e+06 3.40e-01 9.17e-01 2.40e-01 6.12e-02 1.19e-01
1e+03 1e+02 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00
1e+03 1e+04 2.60e-01 6.64e-01 4.20e-01 1.05e-01 1.43e-01
1e+03 1e+06 1.44e+00 2.44e+00 7.60e-01 2.83e-01 1.79e-01
1e+04 1e+02 1.20e-01 5.94e-01 1.60e-01 2.91e-02 6.92e-02
1e+04 1e+04 3.84e+00 8.35e+00 1.14e+00 4.55e-01 2.64e-01
1e+04 1e+06 6.06e+00 7.57e+00 1.14e+00 5.42e-01 1.73e-01

in our experiments; i.e., by removing elements from the uncertain set, the algo-
rithm typically requires fewer QP iterations and maintains smaller uncertain sets.
This can be seen by comparing the results in Tables 6 and 7.

As a means of comparison for the results in Tables 4–7, we present in Table 8
results when the same set of test problems are solved directly with qpOASES. We
report the average number of iterations reported by qpOASES (µ(#QP-Iter)) and
the standard deviation of the number of iterations reported (σ(#QP-Iter)). It is
important to note that these results should not be compared directly with the
similarly named columns in Tables 4–7 since in many iterations our implementa-
tions of Algorithms 4, 5, and 6 solve a linear system directly rather than calling
qpOASES. That being said, the results in Table 8 illustrate the typical behavior
of a classic active-set method with which the number of iterations often increases
with problem size (n) and condition number of H (Hcond). By contrast, such a
dependence appears less significant in the results in Tables 4–7.

A Primal-Dual Active-Set Framework for Convex Quadratic Optimization 21

Table 6 Results of Algorithm 6 (without step 14) employed to solve BQPs.

n Hcond µ(#Iter) σ(#Iter) µ(#SM) µ(#LS) σ(#LS)
1e+02 1e+02 3.78e+00 6.79e-01 4.78e+00 4.78e+00 6.79e-01
1e+02 1e+04 5.14e+00 9.69e-01 6.14e+00 6.14e+00 9.69e-01
1e+02 1e+06 6.22e+00 1.06e+00 7.22e+00 7.22e+00 1.06e+00
1e+03 1e+02 4.78e+00 6.16e-01 5.78e+00 5.78e+00 6.16e-01
1e+03 1e+04 6.64e+00 1.05e+00 7.64e+00 7.64e+00 1.05e+00
1e+03 1e+06 8.02e+00 1.06e+00 9.02e+00 9.02e+00 1.06e+00
1e+04 1e+02 5.80e+00 4.95e-01 6.80e+00 6.80e+00 4.95e-01
1e+04 1e+04 8.86e+00 2.27e+00 1.00e+01 9.66e+00 1.47e+00
1e+04 1e+06 1.04e+01 1.47e+00 1.15e+01 1.13e+01 1.26e+00

n Hcond µ(#QP-Iter) σ(#QP-Iter) µ(Last-|U|) µ(Avg-|U|) σ(Avg-|U|)
1e+02 1e+02 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00
1e+02 1e+04 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00
1e+02 1e+06 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00
1e+03 1e+02 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00
1e+03 1e+04 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00
1e+03 1e+06 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00
1e+04 1e+02 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00
1e+04 1e+04 9.80e-01 6.79e+00 1.80e-01 3.98e-02 2.16e-01
1e+04 1e+06 1.80e-01 1.02e+00 1.00e-01 1.59e-02 5.89e-02

Table 7 Results of Algorithm 6 (with step 14) employed to solve BQPs.

n Hcond µ(#Iter) σ(#Iter) µ(#SM) µ(#LS) σ(#LS)
1e+02 1e+02 3.78e+00 6.79e-01 4.78e+00 4.78e+00 6.79e-01
1e+02 1e+04 5.14e+00 9.69e-01 6.14e+00 6.14e+00 9.69e-01
1e+02 1e+06 6.22e+00 1.06e+00 7.22e+00 7.22e+00 1.06e+00
1e+03 1e+02 4.78e+00 6.16e-01 5.78e+00 5.78e+00 6.16e-01
1e+03 1e+04 6.64e+00 1.05e+00 7.64e+00 7.64e+00 1.05e+00
1e+03 1e+06 8.02e+00 1.06e+00 9.02e+00 9.02e+00 1.06e+00
1e+04 1e+02 5.80e+00 4.95e-01 6.80e+00 6.80e+00 4.95e-01
1e+04 1e+04 8.86e+00 2.27e+00 1.00e+01 9.86e+00 2.27e+00
1e+04 1e+06 1.04e+01 1.54e+00 1.15e+01 1.14e+01 1.54e+00

n Hcond µ(#QP-Iter) σ(#QP-Iter) µ(Last-|U|) µ(Avg-|U|) σ(Avg-|U|)
1e+02 1e+02 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00
1e+02 1e+04 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00
1e+02 1e+06 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00
1e+03 1e+02 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00
1e+03 1e+04 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00
1e+03 1e+06 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00
1e+04 1e+02 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00
1e+04 1e+04 1.20e-01 7.18e-01 0.00e+00 1.11e-02 3.92e-02
1e+04 1e+06 6.00e-02 3.14e-01 0.00e+00 7.13e-03 2.52e-02

For our second set of experiments, we randomly generated problems with n =
104, but with all combinations of numbers of equality constraints (m) in {10, 20}
and condition numbers for H (Hcond) in {102, 104, 106}. For each combination we
generated 10 problems and report the averages (and some standard deviations) of
various performance measures. All measures that we considered were the same as
for the bound-constrained problems, except that we now also report the average
number of calls to Algorithm 1 (µ(#Feas)), the average number of times that
a call to Algorithm 1 actually modified the index set partition (µ(#Feas-Mod)),

22 Frank E. Curtis et al.

Table 8 Results of qpOASES employed to solve BQPs.

n Hcond µ(#QP-Iter) σ(#QP-Iter)
1e+02 1e+02 5.40e+01 7.37e+00
1e+02 1e+04 5.90e+01 6.16e+00
1e+02 1e+06 6.22e+01 6.73e+00
1e+03 1e+02 5.39e+02 2.11e+01
1e+03 1e+04 5.70e+02 2.04e+01
1e+03 1e+06 5.94e+02 1.97e+01
1e+04 1e+02 5.33e+03 5.98e+01
1e+04 1e+04 5.70e+03 6.40e+01
1e+04 1e+06 5.97e+03 8.31e+01

the average total number of simplex pivots (in CPLEX) summed over all calls to
Algorithm 1 (µ(#Feas-Pvt)), and the standard deviation of the total number of
simplex pivots (σ(#Feas-Pvt)). These results are provided in Tables 9–11.

Table 9 Results of Algorithm 5 employed to solve QPs (with n = 104).

m Hcond µ(#Iter) σ(#Iter) µ(#SM) µ(#LS) σ(#LS)
1e+01 1e+02 1.20e+01 3.23e+00 1.30e+01 6.00e+00 0.00e+00
1e+01 1e+04 1.47e+01 9.38e+00 1.57e+01 6.00e+00 0.00e+00
1e+01 1e+06 2.25e+01 1.85e+01 2.35e+01 6.00e+00 0.00e+00
2e+01 1e+02 1.39e+01 5.90e+00 1.49e+01 6.00e+00 0.00e+00
2e+01 1e+04 1.77e+01 1.05e+01 1.87e+01 6.00e+00 0.00e+00
2e+01 1e+06 1.65e+01 6.85e+00 1.75e+01 6.00e+00 0.00e+00

m Hcond µ(#QP-Iter) σ(#QP-Iter) µ(Last-|U|) µ(Avg-|U|) σ(Avg-|U|)
1e+01 1e+02 6.67e+01 2.86e+01 1.30e+00 6.31e-01 2.53e-01
1e+01 1e+04 1.01e+02 7.15e+01 1.60e+00 8.50e-01 7.93e-01
1e+01 1e+06 2.31e+02 3.15e+02 2.80e+00 1.40e+00 1.47e+00
2e+01 1e+02 1.72e+02 1.07e+02 1.60e+00 7.50e-01 3.93e-01
2e+01 1e+04 2.77e+02 2.50e+02 2.00e+00 9.28e-01 5.73e-01
2e+01 1e+06 2.37e+02 1.59e+02 2.10e+00 9.70e-01 5.76e-01

m Hcond µ(#Feas) µ(#Feas-Mod) µ(#Feas-Pvt) σ(#Feas-Pvt)
1e+01 1e+02 1.30e+01 2.70e+00 1.30e+00 2.11e+00
1e+01 1e+04 1.57e+01 3.70e+00 1.90e+00 5.00e+00
1e+01 1e+06 2.35e+01 8.40e+00 1.38e+01 3.21e+01
2e+01 1e+02 1.49e+01 4.00e+00 5.90e+00 7.78e+00
2e+01 1e+04 1.87e+01 3.20e+00 1.10e+00 1.10e+00
2e+01 1e+06 1.75e+01 6.10e+00 7.10e+00 1.16e+01

Tables 9–11 illustrate that Algorithms 5 and 6 (with or without the optional
step 14) successfully and efficiently solved all generated problem instances. More-
over, in all cases, the set Uk was maintained at a very small size relative to n. All
of this being said, these results illustrate that the performance of our algorithms
is less impressive when equality constraints are present. While the size of the un-
certain set is typically very small relative to n, it is less often equal to zero (when
compared to our results for BQPs). For example, in Table 9, the consistent values
6.00e+00 and 0.00e+00 for µ(#LS) and σ(#LS), respectively, indicate that Algo-
rithm 5 consistently only had an empty uncertain set in the first few iterations, and
afterwards the set had at least one element. This means that the solver more often
relies on qpOASES, causing an increase in the total number of subproblem itera-

A Primal-Dual Active-Set Framework for Convex Quadratic Optimization 23

Table 10 Results of Algorithm 6 (without step 14) employed to solve QPs (with n = 104).

m Hcond µ(#Iter) σ(#Iter) µ(#SM) µ(#LS) σ(#LS)
1e+01 1e+02 1.88e+01 8.12e+00 2.74e+01 1.07e+01 2.00e+00
1e+01 1e+04 2.19e+01 7.87e+00 2.82e+01 1.36e+01 2.50e+00
1e+01 1e+06 2.27e+01 7.06e+00 2.79e+01 1.37e+01 2.45e+00
2e+01 1e+02 1.89e+01 5.22e+00 2.40e+01 1.06e+01 1.58e+00
2e+01 1e+04 2.08e+01 9.02e+00 2.63e+01 1.17e+01 3.53e+00
2e+01 1e+06 3.51e+01 2.92e+01 5.47e+01 1.42e+01 3.99e+00

m Hcond µ(#QP-Iter) σ(#QP-Iter) µ(Last-|U|) µ(Avg-|U|) σ(Avg-|U|)
1e+01 1e+02 2.61e+02 4.45e+02 7.60e+00 3.05e+00 4.93e+00
1e+01 1e+04 1.72e+02 2.06e+02 5.30e+00 1.70e+00 2.54e+00
1e+01 1e+06 2.03e+02 3.55e+02 4.20e+00 1.65e+00 3.71e+00
2e+01 1e+02 2.80e+02 2.34e+02 4.10e+00 1.58e+00 2.14e+00
2e+01 1e+04 3.59e+02 5.14e+02 4.50e+00 1.64e+00 3.37e+00
2e+01 1e+06 1.68e+03 3.29e+03 1.86e+01 8.30e+00 1.65e+01

m Hcond µ(#Feas) µ(#Feas-Mod) µ(#Feas-Pvt) σ(#Feas-Pvt)
1e+01 1e+02 2.74e+01 3.70e+00 9.60e+00 1.39e+01
1e+01 1e+04 2.82e+01 4.00e+00 1.00e+01 1.79e+01
1e+01 1e+06 2.79e+01 2.90e+00 8.00e+00 1.93e+01
2e+01 1e+02 2.40e+01 5.80e+00 2.07e+01 3.51e+01
2e+01 1e+04 2.63e+01 3.20e+00 8.10e+00 2.07e+01
2e+01 1e+06 5.47e+01 5.30e+00 5.74e+01 1.03e+02

Table 11 Results for Algorithm 6 (with step 14) employed to solve QPs (with n = 104).

m Hcond µ(#Iter) σ(#Iter) µ(#SM) µ(#LS) σ(#LS)
1e+01 1e+02 3.29e+01 2.14e+01 5.42e+01 3.38e+01 2.12e+01
1e+01 1e+04 3.14e+01 1.64e+01 4.90e+01 3.20e+01 1.56e+01
1e+01 1e+06 3.69e+01 1.96e+01 6.04e+01 3.73e+01 1.84e+01
2e+01 1e+02 3.92e+01 2.74e+01 6.95e+01 3.98e+01 2.72e+01
2e+01 1e+04 4.39e+01 3.02e+01 7.39e+01 4.43e+01 2.90e+01
2e+01 1e+06 1.06e+02 1.13e+02 2.02e+02 1.05e+02 1.07e+02

m Hcond µ(#QP-Iter) σ(#QP-Iter) µ(Last-|U|) µ(Avg-|U|) σ(Avg-|U|)
1e+01 1e+02 2.12e+02 2.85e+02 1.00e-01 4.71e-01 2.96e-01
1e+01 1e+04 1.32e+02 1.91e+02 4.00e-01 4.39e-01 2.61e-01
1e+01 1e+06 2.71e+02 3.27e+02 1.00e-01 4.93e-01 3.00e-01
2e+01 1e+02 6.03e+02 6.23e+02 3.00e-01 5.93e-01 2.95e-01
2e+01 1e+04 6.38e+02 8.15e+02 2.00e-01 5.12e-01 2.88e-01
2e+01 1e+06 1.92e+03 2.46e+03 5.00e-01 6.37e-01 3.76e-01

m Hcond µ(#Feas) µ(#Feas-Mod) µ(#Feas-Pvt) σ(#Feas-Pvt)
1e+01 1e+02 5.42e+01 3.70e+00 3.90e+00 5.11e+00
1e+01 1e+04 4.90e+01 3.40e+00 3.40e+00 6.26e+00
1e+01 1e+06 6.04e+01 5.30e+00 6.40e+00 1.25e+01
2e+01 1e+02 6.95e+01 1.09e+01 3.26e+01 6.19e+01
2e+01 1e+04 7.39e+01 4.60e+00 8.00e+00 2.01e+01
2e+01 1e+06 2.02e+02 9.40e+00 5.57e+01 1.25e+02

tions. The algorithms also involve additional work to maintain feasible partitions;
work that may become significant if even more equality constraints are present.
It is for these reasons that we do not present results for problems with higher
numbers of equality constraints. Still, for the experiments we have performed, the
results of our algorithms are strong when compared to the results obtained when
applying qpOASES directly to solve the problems; see Table 12.

24 Frank E. Curtis et al.

Table 12 Results of qpOASES employed to solve QPs (with n = 104).

m Hcond µ(#QP-Iter) σ(#QP-Iter)
1e+01 1e+02 5.41e+03 5.65e+01
1e+01 1e+04 5.74e+03 9.20e+01
1e+01 1e+06 6.06e+03 1.14e+02
2e+01 1e+02 5.36e+03 7.45e+01
2e+01 1e+04 5.76e+03 5.99e+01
2e+01 1e+06 6.05e+03 4.82e+01

6 Conclusion

Motivated by the impressive practical performance of the primal-dual active-set
method proposed by Hintermüller, Ito, and Kunisch [25] when solving certain
bound-constrained QPs arising from discretized PDE-constrained optimization
problems, we have proposed an algorithmic framework for solving strictly con-
vex QPs that possesses appealing properties. In particular, we have shown that
our framework is globally convergent when solving any strictly convex generally-
constrained QP, and have shown in our numerical experiments that two instances
of our framework achieve this theoretical behavior with only a modest increase in
per-iteration computational cost as compared to the method in [25].

The novel idea underlying our framework is to introduce a set auxiliary to
the traditional active-set estimate. Our techniques for handling this auxiliary set,
which houses the indices of variables whose bounds will be enforced explicitly dur-
ing a given iteration, have been motivated based on two observations. First, we
have seen in our numerical experiments and those of others that the active-set
method in [25] often converges extremely quickly when solving a convex BQP,
despite the limitations of the method’s theoretical convergence guarantees. Sec-
ond, when the method in [25] does not converge, this behavior typically can be
attributed to a small subset of variables that tend to migrate between active and
inactive set estimates. Hence, by introducing our auxiliary set and devising strate-
gies that only move indices to that set to avoid cycling/nonconvergence, we are
able to attain the rapid convergence behavior of the method in [25] while solidifying
a global convergence guarantee for a more general class of problems.

The biggest potential drawback of introducing our auxiliary set is that the
added computational cost may become severe if the size of the set Uk becomes
large. In such cases, rather than simply requiring the solution of a reduced linear
system in each iteration as is required in [25] (and in our framework when Uk = ∅),
our framework requires the solution of a reduced QP with a subset of the original
bound constraints. However, the numerical results that we have provided in §5
show that the set Uk rarely grows beyond a few indices. In fact, we often find that
Uk remains empty throughout most iterations of a run of the algorithm, in which
case our framework behaves as the method in [25].

Our framework was less efficient when solving QPs with a large number of
equality constraints relative to the number of variables. This was not a surprise
to us as the rapidly-adapting active-set estimates may led to infeasible parti-
tions, which may in general lead to unacceptable increases in computational costs.
Therefore, we recommend our framework when solving QPs with many degrees of

A Primal-Dual Active-Set Framework for Convex Quadratic Optimization 25

freedom, and otherwise suggest the use of classical active-set strategies, which are
better tailored for problems with few degrees of freedom.

Finally, we remark that our framework lends itself to possible further enhance-
ments, such as the use of iterative methods in place of direct matrix factorizations
when solving our reduced subproblems. Maintaining global convergence guarantees
when such techniques are used is not a trivial task as inexactness in the subproblem
solves has to be monitored carefully so that progress is still made when updating
the active-set estimates, but such details are a subject of current research.

References

1. M. Aganagić. Newton’s method for linear complementarity problems. Mathematical Pro-
gramming, 28(3):349–362, 1984.

2. M. Bergounioux, K. Ito, and K. Kunisch. Primal-dual strategy for constrained optimal
control problems. SIAM Journal on Control and Optimization, 37(4):1176–1194, 1999.

3. M. Bergounioux and K. Kunisch. Primal-dual strategy for state-constrained optimal con-
trol problems. Computational Optimization and Applications, 22(2):193–224, 2002.

4. E. G. Birgin, C. A. Floudas, and J. M. Mart́ınez. Global minimization using an Augmented
Lagrangian method with variable lower-level constraints. Mathematical Programming,
125(1):139–162, 2010.

5. R. H. Byrd, G. M. Chin, J. Nocedal, and F. Oztoprak. A family of second-order methods
for convex `1-regularized optimization. Technical report, Department of Industrial Engi-
neering and Management Sciences, Northwestern University, Evanston, IL, USA, 2012.

6. L. Chen, Y. Wang, and G. He. A feasible active set QP-free method for nonlinear pro-
gramming. SIAM Journal on Optimization, 17(2):401–429, 2006.

7. P. G. Ciarlet. The Finite Element Method for Elliptic Problems. Classics in Applied
Mathematics. Society for Industrial and Applied Mathematics, Philadelphia, PA, USA,
2002.

8. A. R. Conn, N. I. M. Gould, and Ph. L. Toint. A globally convergent augmented lagrangian
algorithm for optimization with general constraints and simple bounds. SIAM Journal on
Numerical Analysis, 28(2):545–572, 1991.

9. A. R. Conn, N. I. M. Gould, and Ph. L. Toint. Trust-Region Methods. Society for Industrial
and Applied Mathematics, Philadelphia, PA, USA, 2000.

10. C. W. Cryer. The solution of a quadratic programming problem using systematic overre-
laxation. SIAM Journal on Control, 9(3):385–392, 1971.

11. L. Feng, V. Linetsky, J. L. Morales, and J. Nocedal. On the solution of complementarity
problems arising in American options pricing. Optimization Methods and Software, 26(4-
5):813–825, 2011.

12. H. J. Ferreau, C. Kirches, A. Potschka, H. G. Bock, and M. Diehl. qpOASES: a parametric
active-set algorithm for quadratic programming. Mathematical Programming Computa-
tion, pages 1–37, 2014.

13. I. B. Gharbia and J. C. Gilbert. Nonconvergence of the plain Newton-min algorithm for lin-
ear complementarity problems with a P-matrix. Mathematical Programming, 134(2):349–
364, 2012.

14. P. E. Gill, W. Murray, and M. A. Saunders. SNOPT: an SQP algorithm for large-scale
constrained optimization. SIAM Review, 47(1):99–131, 2005.

15. P. E. Gill, W. Murray, and M. A. Saunders. User’s guide for SQOPT version 7: soft-
ware for largescale linear and quadratic programming. Systems Optimization Laboratory,
Stanford University, Palo Alto, CA, USA, 2006.

16. P. E. Gill, W. Murray, and M. H. Wright. Practical Optimization. Emerald Group Pub-
lishing Limited, Bingley, UK, 1982.

17. P. E. Gill and D. P. Robinson. Regularized sequential quadratic programming methods.
Technical report, Department of Mathematics, University of California, San Diego, La
Jolla, CA, USA, 2011.

18. N. I. M. Gould and D. P. Robinson. A second derivative SQP method: global convergence.
SIAM Journal on Optimization, 20(4):2023–2048, 2010.

19. N. I. M. Gould and D. P. Robinson. A second derivative SQP method: local convergence
and practical issues. SIAM Journal on Optimization, 20(4):2049–2079, 2010.

26 Frank E. Curtis et al.

20. N. I. M. Gould and D. P. Robinson. A second-derivative SQP method with a “trust-
region-free” predictor step. IMA Journal of Numerical Analysis, 32(2):580–601, 2011.

21. N. I. M. Gould and Ph. L. Toint. An iterative working-set method for large-scale nonconvex
quadratic programming. Applied Numerical Mathematics, 43(1):109–128, 2002.

22. L. Grippo, F. Lampariello, and S. Lucidi. A nonmonotone line search technique for New-
ton’s method. SIAM Journal on Numerical Analysis, 23(4):707–716, 1986.

23. W. W. Hager. The dual active set algorithm. In P. M. Pardalos, editor, Advances in
Optimization and Parallel Computing, pages 137–142. North Holland, Amsterdam, 1992.

24. W. W. Hager and D. W. Hearn. Application of the dual active set algorithm to quadratic
network optimization. Computational Optimization and Applications, 1(4):349–373, 1993.

25. M. Hintermüller, K. Ito, and K. Kunisch. The primal-dual active set strategy as a semis-
mooth Newton method. SIAM Journal on Optimization, 13(3):865–888, 2003.

26. M. M. Kostreva. Block pivot methods for solving the complementarity problem. Linear
Algebra and its Applications, 21(3):207–215, 1978.

27. M. Kočvara and J. Zowe. An iterative two-step algorithm for linear complementarity
problems. Numerische Mathematik, 68(1):95–106, 1994.

28. K. Kunisch and F. Rendl. An infeasible active set method for quadratic problems with
simple bounds. SIAM Journal on Optimization, 14(1):35–52, 2003.

29. I. Maros and C. Mészáros. A repository of convex quadratic programming problems.
Optimization Methods and Software, 11(1-4):671–681, 1999.

30. J. Moré and G. Toraldo. On the solution of large quadratic programming problems with
bound constraints. SIAM Journal on Optimization, 1(1):93–113, 1991.

31. J. Nocedal and S. J. Wright. Numerical Optimization. Springer Series in Operations
Research and Financial Engineering. Springer, New York, NY, USA, Second edition, 2006.

32. L. F. Portugal, J. J. Júdice, and L. N. Vicente. A comparison of block pivoting and interior-
point algorithms for linear least squares problems with nonnegative variables. Mathematics
of Computation, 63(208):625–643, 1994.

33. D. P. Robinson, L. Feng, J. Nocedal, and J. S. Pang. Subspace accelerated matrix split-
ting algorithms for asymmetric and symmetric linear complementarity problems. SIAM
Journal on Optimization, 23(3):1371–1397, 2013.

34. Ph. L. Toint. Non-monotone trust-region algorithms for nonlinear optimization subject to
convex constraints. Mathematical Programming, 77(3):69–94, 1997.

35. M. Ulbrich and S. Ulbrich. Non-monotone trust region methods for nonlinear equal-
ity constrained optimization without a penalty function. Mathematical programming,
95(1):103–135, 2003.

36. V. Vapnik and C. Cortes. Support vector networks. Machine Learning, 20(3):273–297,
1995.

37. Y. Vardi, L. A. Shepp, and L. Kaufman. A statistical model for positron emission tomog-
raphy. Journal of the American Statistical Association, 80(389):8–20, 1985.

A Appendix: Primal-Dual Active-Set as a Semi-Smooth Newton Method

In this appendix, we show that Algorithm 3 is equivalent to a semi-smooth Newton method
under certain conditions. The following theorem utilizes the concept of a slant derivative of a
slantly differentiable function [25].

Theorem 5 Let {(xk, yk, z
`
k, z

u
k)} be generated by Algorithm 3 with Step 6 employing Algo-

rithm 4, where we suppose that, for all k, (A`
k,A

u
k , Ik,Uk) with Uk = ∅ is a feasible partition

at the start of Step 3. Then, {(xk, yk, z
`
k, z

u
k)} is the sequence of iterates generated by the semi-

smooth Newton method for finding a zero of the function KKT defined by (2) with initial value
(x0, y0, z`

0, z
u
0) = SM(A`

0,Au
0 , I0, ∅) and slant derivative M(a, b) of the slantly differentiable

function m(a, b) = min(a, b) defined by

[M(a, b)]ij =

8>>>>><>>>>>:

0 if j /∈ {i, n+ i}
1 if j = i, ai ≤ bj
0 if j = i, ai > bj
0 if j = n+ i, ai ≤ bj
1 if j = n+ i, ai > bj .

A Primal-Dual Active-Set Framework for Convex Quadratic Optimization 27

Proof To simplify the proof, let us assume that ` = −∞ so that problem (1) has upper bounds
only. This ensures that z`

k = 0 and A`
k = ∅ for all k, so in this proof we remove all references

to these quantities. The proof of the case with both lower and upper bounds follows similarly.
Under the assumptions of the theorem, the point (x0, y0, zu

0) ← SM(∅,Au
0 , I0, ∅) is the

first primal-dual iterate for both algorithms, i.e., Algorithm 3 and the semi-smooth Newton
method. Furthermore, it follows from (4)–(6) that

Hx0 + c−ATy0 + zu
0 = 0 and Ax0 − b = 0. (26)

We now proceed to show that both algorithms generate the same subsequent iterate, namely
(x1, y1, zu

1). The result then follows as a similar argument can be used to show that both
algorithms generate the same iterate (xk, yk, z

u
k) for each k.

Partitioning the variable indices into four sets, namely I, II, III, and IV, we find:

I := {i : i ∈ I0 and [x0]i ≤ ui} =⇒ [zu
0]i = 0; (27a)

II := {i : i ∈ Au
0 and [zu

0]i ≤ 0} =⇒ [x0]i = ui; (27b)

III := {i : i ∈ I0 and [x0]i > ui} =⇒ [zu
0]i = 0; (27c)

IV := {i : i ∈ Au
0 and [zu

0]i > 0} =⇒ [x0]i = ui. (27d)

Here, the implications after each set follow from Step 2 of Algorithm 2. Next, (16) implies

I1 ← I ∪ II and A1 ← III ∪ IV. (28)

Algorithm 3 computes the next iterate as the unique point (x1, y1, zu
1) satisfying

[zu
1]I1 = 0, [x1]A1 = uA1 , Hx1 + c−ATy1 + zu

1 = 0, and Ax1 − b = 0. (29)

Now, let us consider one iteration of the semi-smooth Newton method on the function
KKT defined by (2) using the slant derivative function M . It follows from (27), Table 13, and
the definition of M that the semi-smooth Newton system may be written as

0BBBBBBBBBBBB@

HI,I HI,II HI,III HI,IV AT
N ,I I 0 0 0

HII,I HII,II HII,III HII,IV AT
N ,II 0 I 0 0

HIII,I HIII,II HIII,III HIII,IV AT
N ,III 0 0 I 0

HIV,I HIV,II HIV,III HIV,IV AT
N ,IV 0 0 0 I

AN ,I AN ,II AN ,III AN ,IV 0 0 0 0 0
0 0 0 0 0 I 0 0 0
0 0 0 0 0 0 I 0 0
0 0 −I 0 0 0 0 0 0
0 0 0 −I 0 0 0 0 0

1CCCCCCCCCCCCA

0BBBBBBBBBBB@

∆xI

∆xII

∆xIII

∆xIV

−∆y
∆zI
∆zII
∆zIII
∆zIV

1CCCCCCCCCCCA
= −

0BBBBBBBBBBB@

0
0
0
0
0
0

[zu
0]II

[u− x0]III
0

1CCCCCCCCCCCA
. (30)

Table 13 Quantities relevant to evaluating the function KKT and computing the slant deriva-
tive M at the point (x0, y0, zu

0).

Index set [zu
0]i [u− x0]i min([zu

0]i, [u− x0]i)]

i ∈ I 0 ≥ 0 0

i ∈ II ≤ 0 0 [zu
0]i

i ∈ III 0 < 0 [u− x0]i

i ∈ IV > 0 0 0

The first five block equations of (30) combined with (26) yield

Ax1 − b = A(x0 +∆x)− b = Ax0 − b+A∆x = 0 and (31a)

Hx1 + c−ATy1 + zu
1 = H(x0 +∆x) + c−AT(y0 +∆y) + zu

0 +∆z = 0, (31b)

28 Frank E. Curtis et al.

while the last four blocks of equations of (30) and (27) imply

∆zI = 0 =⇒ [zu
1]I = [zu

0 +∆z]I = 0 (32)

∆zII = −[zu
0]II =⇒ [zu

1]II = [zu
0 +∆z]II = 0 (33)

∆xIII = [u− x0]III =⇒ [x1]III = [x0 +∆x]III = uIII (34)

∆xIV = 0 =⇒ [x1]IV = [x0 +∆x]IV = uIV (35)

so that
[zu

1]I1 = 0 and [x1]A1 = uA1 . (36)

It now follows from (29), (31), and (36) that (x1, y1, zu
1) generated by the semi-smooth Newton

method is the same as that generated by Algorithm 3.

